These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36299716)

  • 41. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1.
    Dong Y; Jiang B; Xu D; Jiang C; Li Q; Gu T
    Bioelectrochemistry; 2018 Oct; 123():34-44. PubMed ID: 29723805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of Methanococcus maripaludis on the corrosion behavior of EH40 steel in seawater.
    Chen S; Deng H; Zhao Y; Lu S; Zhao Y; Cheng X; Liu G; Dou W; Chen J
    Bioelectrochemistry; 2021 Aug; 140():107824. PubMed ID: 33934051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment.
    Chen Z; Dou W; Chen S; Pu Y; Xu Z
    Bioelectrochemistry; 2022 Apr; 144():108040. PubMed ID: 34959026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microstructure and Corrosion Behavior of (CoCrFeNi)
    Wang W; Qi W; Xie L; Yang X; Li J; Zhang Y
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense.
    Qian H; Zhang J; Cui T; Fan L; Chen X; Liu W; Chang W; Du C; Zhang D
    Bioelectrochemistry; 2021 Aug; 140():107746. PubMed ID: 33578300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment.
    Moura V; Ribeiro I; Moriggi P; Capão A; Salles C; Bitati S; Procópio L
    Arch Microbiol; 2018 Dec; 200(10):1447-1456. PubMed ID: 30109372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potentiodynamic polarization study of the in vitro corrosion behavior of 3 high-palladium alloys and a gold-palladium alloy in 5 media.
    Sun D; Monaghan P; Brantley WA; Johnston WM
    J Prosthet Dent; 2002 Jan; 87(1):86-93. PubMed ID: 11807489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical property degradation of X80 pipeline steel due to microbiologically influenced corrosion caused by
    Li Z; Yang J; Guo H; Kumseranee S; Punpruk S; Mohamed ME; Saleh MA; Gu T
    Front Bioeng Biotechnol; 2022; 10():1028462. PubMed ID: 36420439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbiologically influenced corrosion of titanium by Desulfovibrio vulgaris biofilm under organic carbon starvation.
    Unsal T; Xu L; Jia R; Kijkla P; Kumseranee S; Punpruk S; Mohamed ME; Saleh MA; Gu T
    Bioelectrochemistry; 2023 Feb; 149():108307. PubMed ID: 36274516
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of oxygen concentration on the corrosion behavior of high entropy alloy AlCoCrFeNi in simulated deep sea.
    Wang J; Wen W; Xie F; Wu B; Yang Y; Cheng J; Zhang S; Zhang X
    Heliyon; 2024 Jun; 10(12):e32793. PubMed ID: 39022035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.
    Zhang P; Xu D; Li Y; Yang K; Gu T
    Bioelectrochemistry; 2015 Feb; 101():14-21. PubMed ID: 25023048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.
    Rosalbino F; Macciò D; Scavino G; Saccone A
    J Mater Sci Mater Med; 2012 Apr; 23(4):865-71. PubMed ID: 22311078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study on mechanism underlying the acceleration of pitting corrosion of B30 copper-nickel alloy by sulfate-reducing bacteria in seawater.
    Wang J; Li H; Du M; Sun M; Ma L
    Sci Total Environ; 2024 Jun; 928():172645. PubMed ID: 38643520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution.
    Li HZ; Zhao X; Xu J
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():205-14. PubMed ID: 26249582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.
    Spark AJ; Law DW; Ward LP; Cole IS; Best AS
    Environ Sci Technol; 2017 Aug; 51(15):8501-8509. PubMed ID: 28633523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy with WC Particle Reinforcements via Laser Melting Deposition.
    Peng Z; Fan Z; Abdullah MR; Ren C; Li J; Gong P
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445015
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Limiting nitrate triggered increased EPS film but decreased biocorrosion of copper induced by Pseudomonas aeruginosa.
    Xu Z; Dou W; Chen S; Pu Y; Chen Z
    Bioelectrochemistry; 2022 Feb; 143():107990. PubMed ID: 34763171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption of Candida albicans on Ti-6Al-4V surface and its corrosion effects in artificial saliva.
    Zeng F; Li Y; Chen K; Li G; Liu C; Wang L; Li L; Qu Q
    Bioelectrochemistry; 2022 Dec; 148():108248. PubMed ID: 35988504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.