BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 36300110)

  • 1. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy.
    Jin Z; Sun X; Wang Y; Zhou C; Yang H; Zhou S
    Front Immunol; 2022; 13():1018903. PubMed ID: 36300110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncolytic viruses improve cancer immunotherapy by reprogramming solid tumor microenvironment.
    Zhang L; Pakmehr SA; Shahhosseini R; Hariri M; Fakhrioliaei A; Karkon Shayan F; Xiang W; Karkon Shayan S
    Med Oncol; 2023 Dec; 41(1):8. PubMed ID: 38062315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and opportunities for cancer stem cell-targeted immunotherapies include immune checkpoint inhibitor, cancer stem cell-dendritic cell vaccine, chimeric antigen receptor immune cells, and modified exosomes.
    Alqarni A; Jasim SA; Altalbawy FMA; Kaur H; Kaur I; Rodriguez-Benites C; Deorari M; Alwaily ER; Al-Ani AM; Redhee AH
    J Biochem Mol Toxicol; 2024 Jun; 38(6):e23719. PubMed ID: 38764138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy.
    Li YR; Yu Y; Kramer A; Hon R; Wilson M; Brown J; Yang L
    Cells; 2022 May; 11(9):. PubMed ID: 35563889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target tumor microenvironment by innate T cells.
    Li YR; Wilson M; Yang L
    Front Immunol; 2022; 13():999549. PubMed ID: 36275727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Breast Cancer Responses to Immunotherapy-a Search for the Achilles Heel of the Tumor Microenvironment.
    Jenkins S; Wesolowski R; Gatti-Mays ME
    Curr Oncol Rep; 2021 Mar; 23(5):55. PubMed ID: 33755828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunologic tumor microenvironment modulators for turning cold tumors hot.
    Khosravi GR; Mostafavi S; Bastan S; Ebrahimi N; Gharibvand RS; Eskandari N
    Cancer Commun (Lond); 2024 May; 44(5):521-553. PubMed ID: 38551889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADGRE5-centered Tsurv model in T cells recognizes responders to neoadjuvant cancer immunotherapy.
    Li J; Meng Z; Cao Z; Lu W; Yang Y; Li Z; Lu S
    Front Immunol; 2024; 15():1304183. PubMed ID: 38343549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune checkpoint inhibitor resistance in hepatocellular carcinoma.
    Wang Z; Wang Y; Gao P; Ding J
    Cancer Lett; 2023 Feb; 555():216038. PubMed ID: 36529238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Single-Cell Level Perspective of the Tumor Microenvironment and Its Remodeling by CAR-T Cells.
    Gao S; Sugimura R
    Cancer Treat Res; 2022; 183():275-285. PubMed ID: 35551664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting WEE1/AKT Restores p53-Dependent Natural Killer-Cell Activation to Induce Immune Checkpoint Blockade Responses in "Cold" Melanoma.
    Dinavahi SS; Chen YC; Punnath K; Berg A; Herlyn M; Foroutan M; Huntington ND; Robertson GP
    Cancer Immunol Res; 2022 Jun; 10(6):757-769. PubMed ID: 35439317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies.
    Li YR; Halladay T; Yang L
    J Biomed Sci; 2024 Jan; 31(1):5. PubMed ID: 38217016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer genome and tumor microenvironment: Reciprocal crosstalk shapes lung cancer plasticity.
    Mansouri S; Heylmann D; Stiewe T; Kracht M; Savai R
    Elife; 2022 Sep; 11():. PubMed ID: 36074553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric Antigen Receptors for the Tumour Microenvironment.
    Habib R; Nagrial A; Micklethwaite K; Gowrishankar K
    Adv Exp Med Biol; 2020; 1263():117-143. PubMed ID: 32588326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity.
    Kim K; Yang WH; Jung YS; Cha JH
    BMB Rep; 2020 Nov; 53(10):512-520. PubMed ID: 32731915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness.
    Barnestein R; Galland L; Kalfeist L; Ghiringhelli F; Ladoire S; Limagne E
    Oncoimmunology; 2022; 11(1):2120676. PubMed ID: 36117524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.