These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36300613)

  • 21. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccadic eye movements evoked by microstimulation of lobule VII of the cerebellar vermis of macaque monkeys.
    Fujikado T; Noda H
    J Physiol; 1987 Dec; 394():573-94. PubMed ID: 3443975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterizing the short-latency evoked response to intracortical microstimulation across a multi-electrode array.
    Sombeck JT; Heye J; Kumaravelu K; Goetz SM; Peterchev AV; Grill WM; Bensmaia S; Miller LE
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378515
    [No Abstract]   [Full Text] [Related]  

  • 24. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting.
    Chapman BB; Corneil BD
    Eur J Neurosci; 2014 Jan; 39(2):295-307. PubMed ID: 24417515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstimulation of visual cortex to restore vision.
    Tehovnik EJ; Slocum WM; Smirnakis SM; Tolias AS
    Prog Brain Res; 2009; 175():347-75. PubMed ID: 19660667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulation-Evoked Effective Connectivity (SEEC): An in-vivo approach for defining mesoscale corticocortical connectivity.
    Bundy DT; Barbay S; Hudson HM; Frost SB; Nudo RJ; Guggenmos DJ
    J Neurosci Methods; 2023 Jan; 384():109767. PubMed ID: 36493978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of Cortical Neurons to Intracortical Microstimulation in Awake Primates.
    Yun R; Mishler JH; Perlmutter SI; Rao RPN; Fetz EE
    eNeuro; 2023 Apr; 10(4):. PubMed ID: 37037604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatiotemporal Profile of Voltage-Sensitive Dye Responses in the Visual Cortex of Tree Shrews Evoked by Electric Microstimulation of the Dorsal Lateral Geniculate and Pulvinar Nuclei.
    Vanni MP; Thomas S; Petry HM; Bickford ME; Casanova C
    J Neurosci; 2015 Aug; 35(34):11891-6. PubMed ID: 26311771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation.
    Torab K; Davis TS; Warren DJ; House PA; Normann RA; Greger B
    J Neural Eng; 2011 Jun; 8(3):035001. PubMed ID: 21593550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements.
    Bruce CJ; Goldberg ME; Bushnell MC; Stanton GB
    J Neurophysiol; 1985 Sep; 54(3):714-34. PubMed ID: 4045546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque.
    Davis TS; Parker RA; House PA; Bagley E; Wendelken S; Normann RA; Greger B
    J Neural Eng; 2012 Dec; 9(6):065003. PubMed ID: 23186948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields.
    Tehovnik EJ; Slocum WM; Schiller PH
    Eur J Neurosci; 2005 Nov; 22(10):2635-43. PubMed ID: 16307605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity of primate V1 neurons during the gap saccade task.
    Kim K; Lee C
    J Neurophysiol; 2017 Aug; 118(2):1361-1375. PubMed ID: 28615338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Saccadic suppression measured by steady-state visual evoked potentials.
    Chen J; Valsecchi M; Gegenfurtner KR
    J Neurophysiol; 2019 Jul; 122(1):251-258. PubMed ID: 30943105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys.
    Noda H; Fujikado T
    J Neurophysiol; 1987 May; 57(5):1247-61. PubMed ID: 3585467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstimulation of V1 delays the execution of visually guided saccades.
    Tehovnik EJ; Slocum WM; Schiller PH
    Eur J Neurosci; 2004 Jul; 20(1):264-72. PubMed ID: 15245498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstimulation of V1 affects the detection of visual targets: manipulation of target contrast.
    Tehovnik EJ; Slocum WM
    Exp Brain Res; 2005 Sep; 165(3):305-14. PubMed ID: 15942738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle synergies evoked by microstimulation are preferentially encoded during behavior.
    Overduin SA; d'Avella A; Carmena JM; Bizzi E
    Front Comput Neurosci; 2014; 8():20. PubMed ID: 24634652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal.
    Seidemann E; Arieli A; Grinvald A; Slovin H
    Science; 2002 Feb; 295(5556):862-5. PubMed ID: 11823644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.