BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36300730)

  • 1. Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients.
    Oliinyk D; Meier F
    Proteomics; 2023 Apr; 23(7-8):e2200032. PubMed ID: 36300730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF.
    Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M
    Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF.
    Skowronek P; Meier F
    Methods Mol Biol; 2022; 2456():15-27. PubMed ID: 35612732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument.
    Guergues J; Wohlfahrt J; Stevens SM
    J Proteome Res; 2022 Aug; 21(8):2036-2044. PubMed ID: 35876248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics.
    Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H
    Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer.
    Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Räther O; Mann M
    Mol Cell Proteomics; 2018 Dec; 17(12):2534-2545. PubMed ID: 30385480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts.
    Demichev V; Szyrwiel L; Yu F; Teo GC; Rosenberger G; Niewienda A; Ludwig D; Decker J; Kaspar-Schoenefeld S; Lilley KS; Mülleder M; Nesvizhskii AI; Ralser M
    Nat Commun; 2022 Jul; 13(1):3944. PubMed ID: 35803928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.
    Srinivasan A; Sing JC; Gingras AC; Röst HL
    J Proteome Res; 2022 Aug; 21(8):1789-1799. PubMed ID: 35877786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.
    Lou R; Liu W; Li R; Li S; He X; Shui W
    Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients.
    Bekker-Jensen DB; Martínez-Val A; Steigerwald S; Rüther P; Fort KL; Arrey TN; Harder A; Makarov A; Olsen JV
    Mol Cell Proteomics; 2020 Apr; 19(4):716-729. PubMed ID: 32051234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics.
    Meier F; Park MA; Mann M
    Mol Cell Proteomics; 2021; 20():100138. PubMed ID: 34416385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF.
    Mun DG; Budhraja R; Bhat FA; Zenka RM; Johnson KL; Moghekar A; Pandey A
    Proteomics; 2023 May; 23(10):e2200507. PubMed ID: 36752121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast proteomics with dia-PASEF and analytical flow-rate chromatography.
    Szyrwiel L; Gille C; Mülleder M; Demichev V; Ralser M
    Proteomics; 2024 Jan; 24(1-2):e2300100. PubMed ID: 37287406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchro-PASEF Allows Precursor-Specific Fragment Ion Extraction and Interference Removal in Data-Independent Acquisition.
    Skowronek P; Krohs F; Lubeck M; Wallmann G; Itang ECM; Koval P; Wahle M; Thielert M; Meier F; Willems S; Raether O; Mann M
    Mol Cell Proteomics; 2023 Feb; 22(2):100489. PubMed ID: 36566012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of 782 Plasma Peptides by Multiplexed Targeted Proteomics.
    Lesur A; Bernardin F; Koncina E; Letellier E; Kruppa G; Schmit PO; Dittmar G
    J Proteome Res; 2023 Jun; 22(6):1630-1638. PubMed ID: 37011904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant.
    Yu F; Haynes SE; Teo GC; Avtonomov DM; Polasky DA; Nesvizhskii AI
    Mol Cell Proteomics; 2020 Sep; 19(9):1575-1585. PubMed ID: 32616513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.