These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36300823)

  • 1. Systematic Identification of Atom-Centered Symmetry Functions for the Development of Neural Network Potentials.
    Mudassir MW; Goverapet Srinivasan S; Mynam M; Rai B
    J Phys Chem A; 2022 Nov; 126(44):8337-8347. PubMed ID: 36300823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitating ab initio configurational sampling of multicomponent solids using an on-lattice neural network model and active learning.
    Kasamatsu S; Motoyama Y; Yoshimi K; Matsumoto U; Kuwabara A; Ogawa T
    J Chem Phys; 2022 Sep; 157(10):104114. PubMed ID: 36109212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry.
    Li J; Song K; Behler J
    Phys Chem Chem Phys; 2019 May; 21(19):9672-9682. PubMed ID: 30672927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions.
    Parsaeifard B; Goedecker S
    J Chem Phys; 2022 Jan; 156(3):034302. PubMed ID: 35065570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case.
    Staub R; Gantzer P; Harabuchi Y; Maeda S; Varnek A
    Molecules; 2023 May; 28(11):. PubMed ID: 37298952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
    Gastegger M; Schwiedrzik L; Bittermann M; Berzsenyi F; Marquetand P
    J Chem Phys; 2018 Jun; 148(24):241709. PubMed ID: 29960372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shared-weight neural network architecture for predicting molecular properties.
    Profitt TA; Pearson JK
    Phys Chem Chem Phys; 2019 Dec; 21(47):26175-26183. PubMed ID: 31750845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular partition coefficient from machine learning with polarization and entropy embedded atom-centered symmetry functions.
    Zhu Q; Jia Q; Liu Z; Ge Y; Gu X; Cui Z; Fan M; Ma J
    Phys Chem Chem Phys; 2022 Oct; 24(38):23082-23088. PubMed ID: 36134471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials.
    Schienbein P; Blumberger J
    Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartesian message passing neural networks for directional properties: Fast and transferable atomic multipoles.
    Glick ZL; Koutsoukas A; Cheney DL; Sherrill CD
    J Chem Phys; 2021 Jun; 154(22):224103. PubMed ID: 34241239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pair-distribution-function guided optimization of fingerprints for atom-centered neural network potentials.
    Li L; Li H; Seymour ID; Koziol L; Henkelman G
    J Chem Phys; 2020 Jun; 152(22):224102. PubMed ID: 32534535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
    Smith JS; Isayev O; Roitberg AE
    Chem Sci; 2017 Apr; 8(4):3192-3203. PubMed ID: 28507695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.
    Selvaratnam B; Koodali RT; Miró P
    J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water.
    Moradzadeh A; Aluru NR
    J Phys Chem A; 2022 Mar; 126(12):2031-2041. PubMed ID: 35316059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.