These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36301074)

  • 1. Excitatory and inhibitory D-serine binding to the NMDA receptor.
    Yovanno RA; Chou TH; Brantley SJ; Furukawa H; Lau AY
    Elife; 2022 Oct; 11():. PubMed ID: 36301074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine agonism in ionotropic glutamate receptors.
    Stroebel D; Mony L; Paoletti P
    Neuropharmacology; 2021 Aug; 193():108631. PubMed ID: 34058193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate and Glycine Binding to the NMDA Receptor.
    Yu A; Lau AY
    Structure; 2018 Jul; 26(7):1035-1043.e2. PubMed ID: 29887499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine.
    Cheriyan J; Mezes C; Zhou N; Balsara RD; Castellino FJ
    Biochemistry; 2015 Jan; 54(3):787-94. PubMed ID: 25544544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors.
    Chopra DA; Sapkota K; Irvine MW; Fang G; Jane DE; Monaghan DT; Dravid SM
    Sci Rep; 2017 Jul; 7(1):6933. PubMed ID: 28761055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-channel properties of N-methyl-D-aspartate receptors containing chimaeric GluN2A/GluN2D subunits.
    O'Leary T; Wyllie DJ
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1347-54. PubMed ID: 19909274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structurally derived model of subunit-dependent NMDA receptor function.
    Gibb AJ; Ogden KK; McDaniel MJ; Vance KM; Kell SA; Butch C; Burger P; Liotta DC; Traynelis SF
    J Physiol; 2018 Sep; 596(17):4057-4089. PubMed ID: 29917241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors.
    Hansen KB; Tajima N; Risgaard R; Perszyk RE; Jørgensen L; Vance KM; Ogden KK; Clausen RP; Furukawa H; Traynelis SF
    Mol Pharmacol; 2013 Jul; 84(1):114-27. PubMed ID: 23625947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural mechanism of N-methyl-D-aspartate receptor type 1 partial agonism.
    Ylilauri M; Pentikäinen OT
    PLoS One; 2012; 7(10):e47604. PubMed ID: 23077649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
    Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H
    Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics.
    Yao Y; Belcher J; Berger AJ; Mayer ML; Lau AY
    Structure; 2013 Oct; 21(10):1788-99. PubMed ID: 23972471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity.
    Hughes BA; Woodward JJ
    Neuropharmacology; 2016 Jun; 105():96-105. PubMed ID: 26577016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine-dependent activation of NMDA receptors.
    Cummings KA; Popescu GK
    J Gen Physiol; 2015 Jun; 145(6):513-27. PubMed ID: 25964432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives.
    Sapkota K; Irvine MW; Fang G; Burnell ES; Bannister N; Volianskis A; Culley GR; Dravid SM; Collingridge GL; Jane DE; Monaghan DT
    Neuropharmacology; 2017 Oct; 125():64-79. PubMed ID: 28709671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cross-cleft contacts in NMDA receptor gating.
    Paganelli MA; Kussius CL; Popescu GK
    PLoS One; 2013; 8(11):e80953. PubMed ID: 24278352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of ArgTX-636 in the NMDA receptor ion channel.
    Poulsen MH; Andersen J; Christensen R; Hansen KB; Traynelis SF; Strømgaard K; Kristensen AS
    J Mol Biol; 2015 Jan; 427(1):176-89. PubMed ID: 24862283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening.
    Talukder I; Wollmuth LP
    J Gen Physiol; 2011 Aug; 138(2):179-94. PubMed ID: 21746848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors.
    Wang H; Lv S; Stroebel D; Zhang J; Pan Y; Huang X; Zhang X; Paoletti P; Zhu S
    Neuron; 2021 Aug; 109(15):2443-2456.e5. PubMed ID: 34186027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated conformational dynamics of the human GluN1-GluN2A type N-methyl-D-aspartate (NMDA) receptor.
    Essiz S; Gencel M; Aktolun M; Demir A; Carpenter TS; Servili B
    J Mol Model; 2021 May; 27(6):162. PubMed ID: 33969428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.