BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36301469)

  • 1. Latest Trends in Nucleic Acids' Engineering Techniques Applied to Precision Medicine.
    Pereira GC
    Methods Mol Biol; 2023; 2575():25-38. PubMed ID: 36301469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR based therapeutics: a new paradigm in cancer precision medicine.
    Das S; Bano S; Kapse P; Kundu GC
    Mol Cancer; 2022 Mar; 21(1):85. PubMed ID: 35337340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotechnology-Driven Delivery Systems in Inoculation Therapies.
    Pereira GC
    Methods Mol Biol; 2023; 2575():39-57. PubMed ID: 36301470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
    Guo X; Chitale P; Sanjana NE
    Adv Exp Med Biol; 2017; 1016():123-145. PubMed ID: 29130157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
    Wright AV; Nuñez JK; Doudna JA
    Cell; 2016 Jan; 164(1-2):29-44. PubMed ID: 26771484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CRISPR-Cas system - from bacterial immunity to genome engineering.
    Czarnek M; Bereta J
    Postepy Hig Med Dosw (Online); 2016 Sep; 70(0):901-16. PubMed ID: 27594566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.
    Kirchner M; Schneider S
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13508-14. PubMed ID: 26382836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease.
    Gratz SJ; Cummings AM; Nguyen JN; Hamm DC; Donohue LK; Harrison MM; Wildonger J; O'Connor-Giles KM
    Genetics; 2013 Aug; 194(4):1029-35. PubMed ID: 23709638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fourth annual BRDS on genome editing and silencing for precision medicines.
    Chaudhary AK; Bhattarai RS; Mahato RI
    Drug Deliv Transl Res; 2018 Feb; 8(1):266-272. PubMed ID: 29209906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new.
    Sato M; Ohtsuka M; Watanabe S; Gurumurthy CB
    Biol Direct; 2016 Mar; 11(1):16. PubMed ID: 27037013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas13 Precision Transcriptome Engineering in Cancer.
    Granados-Riveron JT; Aquino-Jarquin G
    Cancer Res; 2018 Aug; 78(15):4107-4113. PubMed ID: 30021724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson's disease in the precision medicine era.
    Li D; Mastaglia FL; Fletcher S; Wilton SD
    Med Res Rev; 2020 Nov; 40(6):2650-2681. PubMed ID: 32767426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of the CRISPR/Cas Genome-Sculpting Toolbox: Innovations, Applications and Challenges.
    Batool A; Malik F; Andrabi KI
    Mol Diagn Ther; 2021 Jan; 25(1):41-57. PubMed ID: 33185860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases.
    Landmesser U; Poller W; Tsimikas S; Most P; Paneni F; Lüscher TF
    Eur Heart J; 2020 Oct; 41(40):3884-3899. PubMed ID: 32350510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A warm-start digital CRISPR/Cas-based method for the quantitative detection of nucleic acids.
    Wu X; Chan C; Springs SL; Lee YH; Lu TK; Yu H
    Anal Chim Acta; 2022 Mar; 1196():339494. PubMed ID: 35151407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 18. Development and applications of CRISPR-Cas9 for genome engineering.
    Hsu PD; Lander ES; Zhang F
    Cell; 2014 Jun; 157(6):1262-1278. PubMed ID: 24906146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines.
    Tang N; Zhang Y; Shen Z; Yao Y; Nair V
    CRISPR J; 2021 Aug; 4(4):477-490. PubMed ID: 34406035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases.
    Dubey AK; Kumar Gupta V; Kujawska M; Orive G; Kim NY; Li CZ; Kumar Mishra Y; Kaushik A
    J Nanostructure Chem; 2022; 12(5):833-864. PubMed ID: 35194511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.