BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36301479)

  • 1. Design of SaCas9-HF for In Vivo Gene Therapy.
    Tiwari K; Kumar R; Saudagar P
    Methods Mol Biol; 2023; 2575():261-268. PubMed ID: 36301479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better?
    Lv J; Xi H; Lv X; Zhou Y; Wang J; Chen H; Yan T; Jin J; Zhao J; Gu F; Song Z
    Gene Ther; 2022 Aug; 29(7-8):458-463. PubMed ID: 35095097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection.
    Wang Q; Chen S; Xiao Q; Liu Z; Liu S; Hou P; Zhou L; Hou W; Ho W; Li C; Wu L; Guo D
    Retrovirology; 2017 Nov; 14(1):51. PubMed ID: 29141633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants.
    Kaya H; Ishibashi K; Toki S
    Plant Cell Physiol; 2017 Apr; 58(4):643-649. PubMed ID: 28371831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Selection of CRISPR-Cas Triggering Homology-Directed Repair in Human Cells.
    Li F; Zhou C; Tu T; Liu Y; Lv X; Wang B; Song Z; Zhao Q; Liu C; Gu F; Zhao J
    Hum Gene Ther; 2021 Mar; 32(5-6):302-309. PubMed ID: 33323021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid production of SaCas9 in plant-based cell-free lysate for activity testing.
    Schiermeyer A; Cerda-Bennasser P; Schmelter T; Huang X; Christou P; Schillberg S
    Biotechnol J; 2022 Jul; 17(7):e2100564. PubMed ID: 35316566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally engineered
    Tan Y; Chu AHY; Bao S; Hoang DA; Kebede FT; Xiong W; Ji M; Shi J; Zheng Z
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20969-20976. PubMed ID: 31570596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme.
    Al-Sammarraie N; Ray SK
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation.
    Zhang S; Zhang Q; Hou XM; Guo L; Wang F; Bi L; Zhang X; Li HH; Wen F; Xi XG; Huang X; Shen B; Sun B
    EMBO Rep; 2020 Oct; 21(10):e50184. PubMed ID: 32790142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.
    Feng Y; Chen C; Han Y; Chen Z; Lu X; Liang F; Li S; Qin W; Lin S
    G3 (Bethesda); 2016 Aug; 6(8):2517-21. PubMed ID: 27317783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Human Genome Editing Using SaCas9 Ribonucleoprotein Complexes.
    Wang Y; Wang B; Xie H; Ren Q; Liu X; Li F; Lv X; He X; Cheng C; Deng R; Li J; Zhao J; Song Z; Gu F
    Biotechnol J; 2019 Jul; 14(7):e1800689. PubMed ID: 30927491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-viral delivery of genome-editing nucleases for gene therapy.
    Wang M; Glass ZA; Xu Q
    Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of Pre-Existing Adaptive Immune Responses Against SaCas9 in Humans Using Epitope Mapping and Identification.
    Shen X; Lin Q; Liang Z; Wang J; Yang X; Liang Y; Liang H; Pan H; Yang J; Zhu Y; Li M; Xiang W; Zhu H
    CRISPR J; 2022 Jun; 5(3):445-456. PubMed ID: 35686980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy.
    Guo N; Liu JB; Li W; Ma YS; Fu D
    J Adv Res; 2022 Sep; 40():135-152. PubMed ID: 36100322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.