These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36301734)

  • 1. Microbuckled Mechano-electrochemical Harvesting Fiber for Self-Powered Organ Motion Sensors.
    Sim HJ; Choi C
    Nano Lett; 2022 Nov; 22(21):8695-8703. PubMed ID: 36301734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchy Electrochemical Harvesters for Binarized Self-Powered Strain Gauge-Based Static Motion Sensors.
    Sim HJ; Kim J; Choi JH; Oh M; Choi C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Mechano-Electrochemical Harvesting Fiber and Thermally Responsive Artificial Muscle for Self-Powered Temperature-Strain Dual-Parameter Sensor.
    Sim HJ; Noh JH; Choi JH; Choi C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptically Quantifying Young's Modulus of Soft Materials Using a Self-Locked Stretchable Strain Sensor.
    Cui Z; Wang W; Guo L; Liu Z; Cai P; Cui Y; Wang T; Wang C; Zhu M; Zhou Y; Liu W; Zheng Y; Deng G; Xu C; Chen X
    Adv Mater; 2022 Jun; 34(25):e2104078. PubMed ID: 34423476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchically Plied Mechano-Electrochemical Energy Harvesting Using a Scalable Kinematic Sensing Textile Woven from a Graphene-Coated Commercial Cotton Yarn.
    Kim J; Noh JH; Chun S; Kim SJ; Sim HJ; Choi C
    Nano Lett; 2023 Aug; 23(16):7623-7632. PubMed ID: 37530440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microphase-Separated Elastic and Ultrastretchable Ionogel for Reliable Ionic Skin with Multimodal Sensation.
    Lv D; Li X; Huang X; Cao C; Ai L; Wang X; Ravi SK; Yao X
    Adv Mater; 2024 Apr; 36(17):e2309821. PubMed ID: 37993105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressible and Stretchable Magnetoelectric Sensors Based on Liquid Metals for Highly Sensitive, Self-Powered Respiratory Monitoring.
    Zhang X; Ai J; Zou R; Su B
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15727-15737. PubMed ID: 33779131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting Inertial Energy and Powering Wearable Devices: A Review.
    Zhang H; Shen Q; Zheng P; Wang H; Zou R; Zhang Z; Pan Y; Zhi JY; Xiang ZR
    Small Methods; 2024 Jan; 8(1):e2300771. PubMed ID: 37853661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring.
    Yi F; Wang X; Niu S; Li S; Yin Y; Dai K; Zhang G; Lin L; Wen Z; Guo H; Wang J; Yeh MH; Zi Y; Liao Q; You Z; Zhang Y; Wang ZL
    Sci Adv; 2016 Jun; 2(6):e1501624. PubMed ID: 27386560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemo-Mechanical Energy Harvesters with Enhanced Intrinsic Electrochemical Capacitance in Carbon Nanotube Yarns.
    Oh S; Kim KJ; Goh B; Park CL; Lee GD; Shin S; Lim S; Kim ES; Yoon KR; Choi C; Kim H; Suh D; Choi J; Kim SH
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203767. PubMed ID: 36116125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stretchable potentiometric ion sensor based on surface strain redistributed fiber for sweat monitoring.
    Wang S; Bai Y; Yang X; Liu L; Li L; Lu Q; Li T; Zhang T
    Talanta; 2020 Jul; 214():120869. PubMed ID: 32278417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.
    Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL
    Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion.
    Nastro A; Pienazza N; Baù M; Aceti P; Rouvala M; Ardito R; Ferrari M; Corigliano A; Ferrari V
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omnidirectional Energy Harvesting Fleeces.
    Park CL; Goh B; Kim SH; Choi J
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36688-36697. PubMed ID: 37427804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable piezoelectric nanocomposite generator.
    Park KI; Jeong CK; Kim NK; Lee KJ
    Nano Converg; 2016; 3(1):12. PubMed ID: 28191422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Powered, Stretchable, and Wearable Ion Gel Mechanoreceptor Sensors.
    Chun KY; Seo S; Han CS
    ACS Sens; 2021 May; 6(5):1940-1948. PubMed ID: 34004113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhinophore bio-inspired stretchable and programmable electrochemical sensor.
    Wang S; Qu C; Liu L; Li L; Li T; Qin S; Zhang T
    Biosens Bioelectron; 2019 Oct; 142():111519. PubMed ID: 31326862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.