These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36301943)

  • 41. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering.
    Pant S; Thomas S; Loganathan S; Valapa RB
    Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chitosan-based 3D-printed scaffolds for bone tissue engineering.
    Yadav LR; Chandran SV; Lavanya K; Selvamurugan N
    Int J Biol Macromol; 2021 Jul; 183():1925-1938. PubMed ID: 34097956
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors.
    Teotia AK; Dienel K; Qayoom I; van Bochove B; Gupta S; Partanen J; Seppälä J; Kumar A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48340-48356. PubMed ID: 32993288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering.
    Sun F; Sun X; Wang H; Li C; Zhao Y; Tian J; Lin Y
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair.
    Slavin BV; Nayak VV; Boczar D; Bergamo ET; Slavin BR; Yarholar LM; Torroni A; Coelho PG; Witek L
    J Craniofac Surg; 2024 Jan-Feb 01; 35(1):261-267. PubMed ID: 37622526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration.
    Lee J; Huh SJ; Seok JM; Lee S; Byun H; Jang GN; Kim E; Kim SJ; Park SA; Kim SM; Shin H
    Acta Biomater; 2022 Mar; 140():730-744. PubMed ID: 34896633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part I: Evolution and Optimization of 3D-Printed Scaffolds for Repair of Defects.
    Nayak VV; Slavin B; Bergamo ETP; Boczar D; Slavin BR; Runyan CM; Tovar N; Witek L; Coelho PG
    J Craniofac Surg; 2023 Oct; 34(7):2016-2025. PubMed ID: 37639650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regeneration of Critical-Sized Mandibular Defects Using 3D-Printed Composite Scaffolds: A Quantitative Evaluation of New Bone Formation in In Vivo Studies.
    Dalfino S; Savadori P; Piazzoni M; Connelly ST; Giannì AB; Del Fabbro M; Tartaglia GM; Moroni L
    Adv Healthc Mater; 2023 Aug; 12(21):e2300128. PubMed ID: 37186456
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models.
    Zhao H; Zhang X; Zhou D; Weng Y; Qin W; Pan F; Lv S; Zhao X
    Biomed Mater; 2020 Jul; 15(4):045022. PubMed ID: 32224507
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.