These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36302098)

  • 1. Multiscale Plasmonic Refractory Nanocomposites for High-Temperature Solar Photothermal Conversion.
    Huang Z; Cao C; Wang Q; Zhang H; Owens CE; Hart AJ; Cui K
    Nano Lett; 2022 Nov; 22(21):8526-8533. PubMed ID: 36302098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion.
    Qi B; Chen W; Niu T; Mei Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion.
    Ma C; Yan J; Huang Y; Wang C; Yang G
    Sci Adv; 2018 Aug; 4(8):eaas9894. PubMed ID: 30105303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion.
    Lin KT; Lin H; Yang T; Jia B
    Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Microflower by Photothermal Marangoni-Induced Fluid Instability for Omnidirectional Broadband Photothermal Conversion.
    Tian K; Fan X; Cheng S; Zhu Q; Zheng S; Sun Q; Zhao L; Li Y; Zhang M; Xu H; Qu C; Wang D; Wang C; Liu C; Qi D
    ACS Nano; 2024 Oct; 18(43):29760-29770. PubMed ID: 39425741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Inspired Ultrathin Perfect Absorber for High-Performance Photothermal Conversion.
    Liao Q; Zhu K; Hao X; Wu C; Li J; Cheng H; Yan J; Jiang L; Qu L
    Adv Mater; 2024 Jun; 36(24):e2313366. PubMed ID: 38459762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption.
    Zhang H; Feng L; Liang Y; Xu T
    Nanoscale; 2019 Jan; 11(2):437-443. PubMed ID: 30350835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption.
    Su J; Chen G; Ma C; Zhang Q; Li X; Geng Y; Jia B; Luo H; Liu D
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar Steam Generation and Desalination Using Ultra-Broadband Absorption in Plasmonic Alumina Nanowire Haze Structure-Graphene Oxide-Gold Nanoparticle Composite.
    Behera S; Kim C; Kim K
    Langmuir; 2020 Oct; 36(42):12494-12503. PubMed ID: 33049134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption.
    Sun C; Qin C; Zhai H; Zhang B; Wu X
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.
    Yan J; Liu P; Ma C; Lin Z; Yang G
    Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR.
    Jiang X; Wang T; Zhong Q; Yan R; Huang X
    Nanotechnology; 2020 Jul; 31(31):315202. PubMed ID: 32289755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal properties of plasmonic nanoshell-blended nanofluid for direct solar thermal absorption.
    Duan H; Chen R; Zheng Y; Xu C
    Opt Express; 2018 Nov; 26(23):29956-29967. PubMed ID: 30469877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.