These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36302273)

  • 1. Study on functional mechanical performance of array structures inspired by cuttlebone.
    Wu F; Sun BH
    J Mech Behav Biomed Mater; 2022 Dec; 136():105459. PubMed ID: 36302273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study.
    Lee E; Jia Z; Yang T; Li L
    Acta Biomater; 2022 Dec; 154():312-323. PubMed ID: 36184057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish.
    Yang T; Jia Z; Chen H; Deng Z; Liu W; Chen L; Li L
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23450-23459. PubMed ID: 32913055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Efficient Cellular Materials Inspired by Cuttlebone.
    Mao A; Zhao N; Liang Y; Bai H
    Adv Mater; 2021 Apr; 33(15):e2007348. PubMed ID: 33675262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired lightweight cellular materials--understanding effects of natural variation on mechanical properties.
    Cadman J; Chang CC; Chen J; Chen Y; Zhou S; Li W; Li Q
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3146-52. PubMed ID: 23706194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology.
    Saufi SASA; Zuhri MYM; Dezaki ML; Sapuan SM; Ilyas RA; As'arry A; Ariffin MKA; Bodaghi M
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces.
    Afshar M; Pourkamali Anaraki A; Montazerian H
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():254-267. PubMed ID: 30184749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive and Energy Absorption Properties of Pyramidal Lattice Structures by Various Preparation Methods.
    Zhang H; Wang X; Shi Z; Xue J; Han F
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy absorption and bearing capacity of light-weight bio-inspired structures produced by selective laser melting.
    Meng L; Liang H; Yu H; Yang J; Li F; Wang Z; Zeng X
    J Mech Behav Biomed Mater; 2019 May; 93():170-182. PubMed ID: 30802774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive Properties of Functionally Graded Bionic Bamboo Lattice Structures Fabricated by FDM.
    Wen Z; Li M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and biomechanical characteristics of porous meniscal implant structures using triply periodic minimal surfaces.
    Zhu LY; Li L; Li ZA; Shi JP; Tang WL; Yang JQ; Jiang Q
    J Transl Med; 2019 Mar; 17(1):89. PubMed ID: 30885229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties.
    Li L; Guo C; Chen Y; Chen Y
    Bioinspir Biomim; 2020 Mar; 15(3):036006. PubMed ID: 31945752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and investigation of the deformation behavior of porous magnesium scaffolds with entangled architectured pore channels.
    Jiang G; Li Q; Wang C; Dong J; He G
    J Mech Behav Biomed Mater; 2016 Dec; 64():139-50. PubMed ID: 27498424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear deformation and fracture of human cortical bone.
    Tang T; Ebacher V; Cripton P; Guy P; McKay H; Wang R
    Bone; 2015 Feb; 71():25-35. PubMed ID: 25305520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.