These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36302402)

  • 1. A comprehensive review of the heavy metal issues regarding commercial vanadium‑titanium-based SCR catalyst.
    Wu YW; Zhou XY; Zhou JL; Hu Z; Cai Q; Lu Q
    Sci Total Environ; 2023 Jan; 857(Pt 3):159712. PubMed ID: 36302402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review.
    Wang D; Chen Q; Zhang X; Gao C; Wang B; Huang X; Peng Y; Li J; Lu C; Crittenden J
    Environ Sci Technol; 2021 Mar; 55(5):2743-2766. PubMed ID: 33569951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategy and Technical Progress of Recycling of Spent Vanadium-Titanium-Based Selective Catalytic Reduction Catalysts.
    Zhao J; Zhang X; Yang F; Ai Y; Chen Y; Pan D
    ACS Omega; 2024 Feb; 9(6):6036-6058. PubMed ID: 38371753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J
    Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources.
    Ye B; Jeong B; Lee MJ; Kim TH; Park SS; Jung J; Lee S; Kim HD
    Nano Converg; 2022 Nov; 9(1):51. PubMed ID: 36401645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Unexpected Offset Effects of Cd and SO
    Yan L; Wang F; Wang P; Impeng S; Liu X; Han L; Yan T; Zhang D
    Environ Sci Technol; 2020 Jun; 54(12):7697-7705. PubMed ID: 32433872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.
    Lee CW; Serre SD; Zhao Y; Lee SJ; Hastings TW
    J Air Waste Manag Assoc; 2008 Apr; 58(4):484-93. PubMed ID: 18422035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research landscape and hotspots of selective catalytic reduction (SCR) for NO
    Ai W; Wang J; Wen J; Wang S; Tan W; Zhang Z; Liang K; Zhang R; Li W
    Environ Sci Pollut Res Int; 2023 May; 30(24):65482-65499. PubMed ID: 37081369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CuO modified vanadium-based SCR catalysts for Hg
    Wang H; Wang B; Zhou J; Li G; Zhang D; Ma Z; Xiong R; Sun Q; Xu WQ
    J Environ Manage; 2019 Jun; 239():17-22. PubMed ID: 30877969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.
    Cao Y; Gao Z; Zhu J; Wang Q; Huang Y; Chiu C; Parker B; Chu P; Pant WP
    Environ Sci Technol; 2008 Jan; 42(1):256-61. PubMed ID: 18350905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO
    Zhang P; Wang P; Impeng S; Lan T; Liu X; Zhang D
    Environ Sci Technol; 2022 Sep; 56(17):12553-12562. PubMed ID: 35960931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory (DFT) studies of vanadium-titanium based selective catalytic reduction (SCR) catalysts.
    Zhao Z; Li E; Qin Y; Liu X; Zou Y; Wu H; Zhu T
    J Environ Sci (China); 2020 Apr; 90():119-137. PubMed ID: 32081309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SO
    Si Z; Shen Y; He J; Yan T; Zhang J; Deng J; Zhang D
    Environ Sci Technol; 2022 Jan; 56(1):605-613. PubMed ID: 34935391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases.
    Gao Y; Zhang Z; Wu J; Duan L; Umar A; Sun L; Guo Z; Wang Q
    Environ Sci Technol; 2013 Oct; 47(19):10813-23. PubMed ID: 23991895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review on the NO removal from flue gas by oxidation methods.
    Si M; Shen B; Adwek G; Xiong L; Liu L; Yuan P; Gao H; Liang C; Guo Q
    J Environ Sci (China); 2021 Mar; 101():49-71. PubMed ID: 33334538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO
    Zhou J; Wang P; Chen A; Qu W; Zhao Y; Zhang D
    Environ Sci Technol; 2022 May; 56(10):6668-6677. PubMed ID: 35500206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient NO
    Jia Z; Shen Y; Yan T; Li H; Deng J; Fang J; Zhang D
    Environ Sci Technol; 2022 Feb; 56(4):2647-2655. PubMed ID: 35107976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation or Aggravation: Pb and SO
    Zou J; Impeng S; Wang F; Lan T; Wang L; Wang P; Zhang D
    Environ Sci Technol; 2022 Sep; 56(18):13368-13378. PubMed ID: 36074097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust.
    Feng S; Li Z; Shen B; Yuan P; Ma J; Wang Z; Kong W
    J Environ Manage; 2022 Sep; 317():115457. PubMed ID: 35751261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.