BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36302411)

  • 1. Enhanced electricity generation and storage by nitrogen-doped hierarchically porous carbon modification of the capacitive bioanode in microbial fuel cells.
    Wu J; Liu R; Dong P; Li N; He W; Feng Y; Liu J
    Sci Total Environ; 2023 Feb; 858(Pt 1):159688. PubMed ID: 36302411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced microorganism attachment and flavin excretion in microbial fuel cells via an N,S-codoped carbon microflower anode.
    Cheng X; Liu B; Qiu Y; Liu K; Fang Z; Qi J; Ma Z; Sun T; Liu S
    J Colloid Interface Sci; 2023 Oct; 648():327-337. PubMed ID: 37301157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.
    Wu X; Qiao Y; Shi Z; Tang W; Li CM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11671-11677. PubMed ID: 29557635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive and capacitive network for enriching the exoelectrogens and enhancing the extracellular electron transfer in microbial fuel cells.
    Cheng X; Qiu Y; Wang Y; Yu M; Qi J; Ma Z; Sun T; Liu S
    J Colloid Interface Sci; 2024 Jun; 664():309-318. PubMed ID: 38479267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of Anode Materials on Electricity Generation and Organic Wastewater Treatment of 6 L Microbial Fuel Cells].
    Ding WJ; Yu LL; Chen J; Cheng SA
    Huan Jing Ke Xue; 2017 May; 38(5):1911-1917. PubMed ID: 29965096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell.
    Xu H; Wang L; Wen Q; Chen Y; Qi L; Huang J; Tang Z
    Bioelectrochemistry; 2019 Oct; 129():144-153. PubMed ID: 31158799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetal-organic framework-derived porous CoFe
    Ren T; Liu Y; Shi C; Li C
    J Colloid Interface Sci; 2023 Aug; 643():428-436. PubMed ID: 37086532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer.
    Zou J; Chang Q; Guo C; Yan M
    J Environ Manage; 2023 Nov; 346():119048. PubMed ID: 37742561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.
    Mohamed HO; Obaid M; Sayed ET; Liu Y; Lee J; Park M; Barakat NAM; Kim HY
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1151-1161. PubMed ID: 28526899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.
    Chen Q; Pu W; Hou H; Hu J; Liu B; Li J; Cheng K; Huang L; Yuan X; Yang C; Yang J
    Bioresour Technol; 2018 Feb; 249():567-573. PubMed ID: 29091839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells.
    Guo W; Chao S; Chen Q
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):143-151. PubMed ID: 31535224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Macroporous Free-Standing Microbial Fuel Cell Anode Derived from Grape for Efficient Power Generation and Brewery Wastewater Treatment.
    Sun JZ; Shu QC; Sun HW; Liu YC; Yang XY; Zhang YX; Wang G
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38931000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation.
    Wang Y; Wen Q; Chen Y; Yin J; Duan T
    Appl Biochem Biotechnol; 2016 Dec; 180(7):1372-1385. PubMed ID: 27557903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDA-Fe
    Zhang C; Zeng X; Xu X; Nie W; Dubey BK; Ding W
    Chemosphere; 2024 May; 355():141764. PubMed ID: 38521108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.
    Yu YY; Guo CX; Yong YC; Li CM; Song H
    Chemosphere; 2015 Dec; 140():26-33. PubMed ID: 25439129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering three-dimensional bioanode configuration for augmenting power generation and nitrogen removal in air-cathode microbial fuel cells.
    Yang N; Luo H; Xiong X; Liu M; Zhan G; Jin X; Tang W; Chen Z; Lei Y
    Bioresour Technol; 2023 Jul; 379():129026. PubMed ID: 37030417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective and Economical 3D Carbon Sponge with Carbon Nanoparticles as Floating Air Cathode for Sustainable Electricity Production in Microbial Fuel Cells.
    Wang S; Gariepy Y; Adekunle A; Raghavan V
    Appl Biochem Biotechnol; 2024 Apr; 196(4):1820-1839. PubMed ID: 37440114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells.
    Yuan Y; Zhou S; Liu Y; Tang J
    Environ Sci Technol; 2013 Dec; 47(24):14525-32. PubMed ID: 24229064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrogen addition on the performance of microbial fuel cell anodes.
    Saito T; Mehanna M; Wang X; Cusick RD; Feng Y; Hickner MA; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):395-8. PubMed ID: 20889061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.