BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36302815)

  • 21. A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography.
    Uemura T; Näppi JJ; Ryu Y; Watari C; Kamiya T; Yoshida H
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):81-89. PubMed ID: 33150471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning based adaptive sequential data augmentation technique for the optical network traffic synthesis.
    Li J; Wang D; Li S; Zhang M; Song C; Chen X
    Opt Express; 2019 Jun; 27(13):18831-18847. PubMed ID: 31252819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN.
    Guan Q; Chen Y; Wei Z; Heidari AA; Hu H; Yang XH; Zheng J; Zhou Q; Chen H; Chen F
    Comput Biol Med; 2022 Jun; 145():105444. PubMed ID: 35421795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning Based One-Class Detection System for Fake Faces Generated by GAN Network.
    Li S; Dutta V; He X; Matsumaru T
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
    Wang Y; Chen Q; Shao H; Zhang R; Shen H
    Comput Biol Med; 2024 Feb; 169():107828. PubMed ID: 38101117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized automated cardiac MR scar quantification with GAN-based data augmentation.
    Lustermans DRPRM; Amirrajab S; Veta M; Breeuwer M; Scannell CM
    Comput Methods Programs Biomed; 2022 Nov; 226():107116. PubMed ID: 36148718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AI-driven deep convolutional neural networks for chest X-ray pathology identification.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):365-376. PubMed ID: 35068415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation.
    Lorencin I; Baressi Šegota S; Anđelić N; Mrzljak V; Ćabov T; Španjol J; Car Z
    Biology (Basel); 2021 Feb; 10(3):. PubMed ID: 33652727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generative Adversarial Networks for Robust Breast Cancer Prognosis Prediction with Limited Data Size.
    Hsu TC; Lin C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5669-5672. PubMed ID: 33019263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives.
    Pan T; Chen J; Zhang T; Liu S; He S; Lv H
    ISA Trans; 2022 Sep; 128(Pt B):1-10. PubMed ID: 34953580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of Sports Training Performance Prediction Model Based on a Generative Adversarial Deep Neural Network Algorithm.
    Li G
    Comput Intell Neurosci; 2022; 2022():1211238. PubMed ID: 35637721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving Speech Emotion Recognition With Adversarial Data Augmentation Network.
    Yi L; Mak MW
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):172-184. PubMed ID: 33035171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seismic Data Augmentation Based on Conditional Generative Adversarial Networks.
    Li Y; Ku B; Zhang S; Ahn JK; Ko H
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation.
    Lee H; Lee H; Hong H; Bae H; Lim JS; Kim J
    Med Phys; 2021 Sep; 48(9):5029-5046. PubMed ID: 34287951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement diagnostic accuracy of sinusitis recognition in paranasal sinus X-ray using multiple deep learning models.
    Kim HG; Lee KM; Kim EJ; Lee JS
    Quant Imaging Med Surg; 2019 Jun; 9(6):942-951. PubMed ID: 31367548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.