BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36302874)

  • 1. Climate change and species facilitation affect the recruitment of macroalgal marine forests.
    Monserrat M; Comeau S; Verdura J; Alliouane S; Spennato G; Priouzeau F; Romero G; Mangialajo L
    Sci Rep; 2022 Oct; 12(1):18103. PubMed ID: 36302874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of climate change factors on marine macroalgae: A review.
    Ji Y; Gao K
    Adv Mar Biol; 2021; 88():91-136. PubMed ID: 34119047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.
    Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P
    Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta).
    Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE
    J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae.
    Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN
    Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis.
    Cornwall CE; Harvey BP; Comeau S; Cornwall DL; Hall-Spencer JM; Peña V; Wada S; Porzio L
    Glob Chang Biol; 2022 Jan; 28(2):362-374. PubMed ID: 34689395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae.
    Page TM; McDougall C; Bar I; Diaz-Pulido G
    BMC Genomics; 2022 Oct; 23(1):729. PubMed ID: 36303112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can thermal anomalies impair the restoration of Cystoseira s.l. forests?
    Cimini J; Asnaghi V; Chiantore M; Kaleb S; Onida A; Falace A
    Mar Environ Res; 2024 Jun; 198():106537. PubMed ID: 38728798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced spore germination explains sensitivity of reef-building algae to climate change stressors.
    Ordoñez A; Kennedy EV; Diaz-Pulido G
    PLoS One; 2017; 12(12):e0189122. PubMed ID: 29206887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of temperature and pCO
    Bennett HM; Altenrath C; Woods L; Davy SK; Webster NS; Bell JJ
    Glob Chang Biol; 2017 May; 23(5):2031-2046. PubMed ID: 27550825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.
    Guenther R; Miklasz K; Carrington E; Martone PT
    J Phycol; 2018 Apr; 54(2):153-158. PubMed ID: 29288535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
    Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA
    Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.
    Scherner F; Pereira CM; Duarte G; Horta PA; E Castro CB; Barufi JB; Pereira SM
    PLoS One; 2016; 11(5):e0154844. PubMed ID: 27158820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroalgal response to a warmer ocean with higher CO
    Hernández CA; Sangil C; Fanai A; Hernández JC
    Mar Environ Res; 2018 May; 136():99-105. PubMed ID: 29478765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species.
    Twist BA; Mazel F; Zaklan Duff S; Lemay MA; Pearce CM; Martone PT
    J Phycol; 2024 Apr; 60(2):363-379. PubMed ID: 38147464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major loss of coralline algal diversity in response to ocean acidification.
    Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes.
    Zhang T; Li X; Cao R; Zhang Q; Qu Y; Wang Q; Dong Z; Zhao J
    Sci Total Environ; 2022 Jun; 824():153780. PubMed ID: 35176363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and ocean acidification effects on seagrasses and marine macroalgae.
    Koch M; Bowes G; Ross C; Zhang XH
    Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coralline algae elevate pH at the site of calcification under ocean acidification.
    Cornwall CE; Comeau S; McCulloch MT
    Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease.
    Williams GJ; Price NN; Ushijima B; Aeby GS; Callahan S; Davy SK; Gove JM; Johnson MD; Knapp IS; Shore-Maggio A; Smith JE; Videau P; Work TM
    Proc Biol Sci; 2014 Mar; 281(1778):20133069. PubMed ID: 24452029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.