These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36303461)
21. Three-dimensional imaging and analysis of the internal structure of SAPO-34 zeolite crystals. Bai X; Chen B; Yang F; Liu X; Silva-Nunes D; Robinson I RSC Adv; 2018 Sep; 8(59):33631-33636. PubMed ID: 35548840 [TBL] [Abstract][Full Text] [Related]
22. Enhanced catalytic performance of copper-exchanged SAPO-34 molecular sieve in methanol-to-olefin reaction. Kim SJ; Park JW; Lee KY; Seo G; Song MK; Jeong SY J Nanosci Nanotechnol; 2010 Jan; 10(1):147-57. PubMed ID: 20352825 [TBL] [Abstract][Full Text] [Related]
23. Controlling product selectivity and catalyst lifetime by altering acid strength, cavity size of SAPO, and diffusion rate of methanol in the MTO reaction: DFT and MD calculations. Soheili S; Nakhaei Pour A Phys Chem Chem Phys; 2024 Feb; 26(6):5226-5236. PubMed ID: 38261405 [TBL] [Abstract][Full Text] [Related]
24. Comparative Synthesis and Characterization of Nanostructured SAPO-34 Using TEA and Morpholine: Effect of Mono vs. Dual Template on Catalytic Properties and Performance toward Methanol to Light Olefins. Aghamohammadi S; Haghighi M; Sadeghpour P; Souri T Comb Chem High Throughput Screen; 2021; 24(4):509-520. PubMed ID: 32928082 [TBL] [Abstract][Full Text] [Related]
25. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929 [TBL] [Abstract][Full Text] [Related]
26. Highly Efficient Low-loaded PdO Otroshchenko T; Sharapa DI; Fedorova EA; Zhao D; Kondratenko EV Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202410646. PubMed ID: 38972838 [TBL] [Abstract][Full Text] [Related]
27. Can Metal Promotion of SAPO-34 Genuinely Improve Its Catalytic Performance in Methanol Conversion to Light Olefins Reaction? Ghavipour M; Al Hussami R; Nasser G; Kopyscinski J Chemphyschem; 2024 Dec; 25(24):e202400357. PubMed ID: 39230638 [TBL] [Abstract][Full Text] [Related]
28. Light Olefin Diffusion during the MTO Process on H-SAPO-34: A Complex Interplay of Molecular Factors. Cnudde P; Demuynck R; Vandenbrande S; Waroquier M; Sastre G; Speybroeck VV J Am Chem Soc; 2020 Apr; 142(13):6007-6017. PubMed ID: 32157875 [TBL] [Abstract][Full Text] [Related]
29. Investigation of synthesis time and type of seed along with reduction of template consumption in the preparation of SAPO-34 catalyst and its performance in the MTO reaction. Akhgar S; Towfighi J; Hamidzadeh M RSC Adv; 2020 Sep; 10(57):34474-34485. PubMed ID: 35514429 [TBL] [Abstract][Full Text] [Related]
30. Effect of Feedstock and Catalyst Impurities on the Methanol-to-Olefin Reaction over H-SAPO-34. Vogt C; Weckhuysen BM; Ruiz-Martínez J ChemCatChem; 2017 Jan; 9(1):183-194. PubMed ID: 28163792 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and Applications of SAPO-34 Molecular Sieves. Yu W; Wu X; Cheng B; Tao T; Min X; Mi R; Huang Z; Fang M; Liu Y Chemistry; 2022 Feb; 28(11):e202102787. PubMed ID: 34961998 [TBL] [Abstract][Full Text] [Related]
32. CTAB-assisted size controlled synthesis of SAPO-34 and its contribution toward MTO performance. Bakhtiar SUH; Wang X; Ali S; Yuan F; Li Z; Zhu Y Dalton Trans; 2018 Jul; 47(29):9861-9870. PubMed ID: 29995968 [TBL] [Abstract][Full Text] [Related]
33. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
34. Catalytic Longevity of Hierarchical SAPO-34/AlMCM-41 Nanocomposite Molecular Sieve In Methanol-to-Olefins Process. Roohollahi H; Halladj R; Askari S Comb Chem High Throughput Screen; 2021; 24(4):521-533. PubMed ID: 32342811 [TBL] [Abstract][Full Text] [Related]
35. Life Time Improvement of Hierarchically Structured SAPO-34 Nanocatalyst in MTO Reaction Yazdanpanah R; Moradiyan E; Halladj R; Askari S Comb Chem High Throughput Screen; 2021; 24(4):534-545. PubMed ID: 32342812 [TBL] [Abstract][Full Text] [Related]
36. Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by identifying light atoms and bonds. Shen B; Chen X; Fan X; Xiong H; Wang H; Qian W; Wang Y; Wei F Nat Commun; 2021 Apr; 12(1):2212. PubMed ID: 33850118 [TBL] [Abstract][Full Text] [Related]
37. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Yarulina I; De Wispelaere K; Bailleul S; Goetze J; Radersma M; Abou-Hamad E; Vollmer I; Goesten M; Mezari B; Hensen EJM; Martínez-Espín JS; Morten M; Mitchell S; Perez-Ramirez J; Olsbye U; Weckhuysen BM; Van Speybroeck V; Kapteijn F; Gascon J Nat Chem; 2018 Aug; 10(8):804-812. PubMed ID: 29941905 [TBL] [Abstract][Full Text] [Related]
38. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects. McInnis JP; Delferro M; Marks TJ Acc Chem Res; 2014 Aug; 47(8):2545-57. PubMed ID: 25075755 [TBL] [Abstract][Full Text] [Related]
39. Effects of Desilication in NaOH/Piperidine Medium and Phosphorus Modification on the Catalytic Activity of HZSM-5 Catalyst in Methanol to Propylene Conversion. Safaei E; Taghizadeh M Comb Chem High Throughput Screen; 2021; 24(4):546-558. PubMed ID: 32664835 [TBL] [Abstract][Full Text] [Related]
40. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods. Azarhoosh MJ; Halladj R; Askari S; Aghaeinejad-Meybodi A Ultrason Sonochem; 2019 Nov; 58():104646. PubMed ID: 31450297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]