BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36303726)

  • 21. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis.
    Ni Y; Aghamirzaie D; Elmarakeby H; Collakova E; Li S; Grene R; Heath LS
    Front Plant Sci; 2016; 7():1936. PubMed ID: 28066488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PKI: A bioinformatics method of quantifying the importance of nodes in gene regulatory network via a pseudo knockout index.
    Wang Y; Liu C; Qiao X; Han X; Liu ZP
    Biochim Biophys Acta Gene Regul Mech; 2023 Jun; 1866(2):194911. PubMed ID: 36804477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the Role of DNMT1 in Dental Papilla Cell Fate Specification during Mouse Tooth Germ Development through Integrated Single-Cell Transcriptomics and Bulk RNA Sequencing.
    Eldeeb D; Okada H; Suzuki Y; Seki M; Tanaka J; Mishima K; Chung UI; Ohba S; Hojo H
    J Oral Biosci; 2024 Jun; ():. PubMed ID: 38942194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling gene regulatory networks using neural network architectures.
    Shu H; Zhou J; Lian Q; Li H; Zhao D; Zeng J; Ma J
    Nat Comput Sci; 2021 Jul; 1(7):491-501. PubMed ID: 38217125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. B-cell lymphoma gene regulatory networks: biological consistency among inference methods.
    de Matos Simoes R; Dehmer M; Emmert-Streib F
    Front Genet; 2013; 4():281. PubMed ID: 24379827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network Activity Evaluation Reveals Significant Gene Regulatory Architectures during SARS-CoV-2 Viral Infection from Dynamic scRNA-seq Data.
    Wang C; Liu ZP
    IEEE J Biomed Health Inform; 2024 Jan; PP():. PubMed ID: 38294926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Consensus Gene Regulatory Network for Neurodegenerative Diseases Using Single-Cell RNA-Seq Data.
    Koumadorakis DE; Krokidis MG; Dimitrakopoulos GN; Vrahatis AG
    Adv Exp Med Biol; 2023; 1423():215-224. PubMed ID: 37525047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization.
    Skok Gibbs C; Mahmood O; Bonneau R; Cho K
    Genome Biol; 2024 Apr; 25(1):88. PubMed ID: 38589899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting and improving gene regulatory network inference using single-cell transcriptome data.
    Xue L; Wu Y; Lin Y
    Genome Res; 2023 Sep; 33(9):1609-1621. PubMed ID: 37580132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling Root Development Through Single-Cell Omics and Reconstruction of Gene Regulatory Networks.
    Serrano-Ron L; Cabrera J; Perez-Garcia P; Moreno-Risueno MA
    Front Plant Sci; 2021; 12():661361. PubMed ID: 34017350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ModularBoost: an efficient network inference algorithm based on module decomposition.
    Li X; Zhang W; Zhang J; Li G
    BMC Bioinformatics; 2021 Mar; 22(1):153. PubMed ID: 33761871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SRGS: sparse partial least squares-based recursive gene selection for gene regulatory network inference.
    Guan J; Wang Y; Wang Y; Zhuang Y; Ji G
    BMC Genomics; 2022 Nov; 23(1):782. PubMed ID: 36451086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data.
    Heydari T; A Langley M; Fisher CL; Aguilar-Hidalgo D; Shukla S; Yachie-Kinoshita A; Hughes M; M McNagny K; Zandstra PW
    PLoS Comput Biol; 2022 Feb; 18(2):e1009907. PubMed ID: 35213533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning.
    Lin Z; Ou-Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene regulatory network inference in the era of single-cell multi-omics.
    Badia-I-Mompel P; Wessels L; Müller-Dott S; Trimbour R; Ramirez Flores RO; Argelaguet R; Saez-Rodriguez J
    Nat Rev Genet; 2023 Nov; 24(11):739-754. PubMed ID: 37365273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inference of Gene Regulatory Networks Based on Multi-view Hierarchical Hypergraphs.
    Wu S; Jin K; Tang M; Xia Y; Gao W
    Interdiscip Sci; 2024 Feb; ():. PubMed ID: 38342857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.