These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36303726)

  • 41. Inference of Gene Regulatory Networks Based on Multi-view Hierarchical Hypergraphs.
    Wu S; Jin K; Tang M; Xia Y; Gao W
    Interdiscip Sci; 2024 Feb; ():. PubMed ID: 38342857
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using ATAC-seq and RNA-seq to increase resolution in GRN connectivity.
    Lowe EK; Cuomo C; Voronov D; Arnone MI
    Methods Cell Biol; 2019; 151():115-126. PubMed ID: 30948003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data.
    Moore D; Simoes RM; Dehmer M; Emmert-Streib F
    Curr Genomics; 2019 Jan; 20(1):38-48. PubMed ID: 31015790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference.
    Seçilmiş D; Nelander S; Sonnhammer ELL
    Front Genet; 2022; 13():855770. PubMed ID: 35923701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly sensitive inference of time-delayed gene regulation by network deconvolution.
    Chen H; Mundra PA; Zhao LN; Lin F; Zheng J
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S6. PubMed ID: 25521243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data.
    Yang B; Bao W; Chen B; Song D
    BioData Min; 2022 Jun; 15(1):13. PubMed ID: 35690842
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative analytical assay of gene regulatory networks inferred using microarray and RNA-seq datasets.
    Izadi F; Zarrini HN; Kiani G; Jelodar NB
    Bioinformation; 2016; 12(6):340-346. PubMed ID: 28293077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.
    Lasri A; Shahrezaei V; Sturrock M
    BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimal design of gene knockout experiments for gene regulatory network inference.
    Ud-Dean SM; Gunawan R
    Bioinformatics; 2016 Mar; 32(6):875-83. PubMed ID: 26568633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studying temporal dynamics of single cells: expression, lineage and regulatory networks.
    Pan X; Zhang X
    Biophys Rev; 2024 Feb; 16(1):57-67. PubMed ID: 38495440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reverse engineering of a mechanistic model of gene expression using metastability and temporal dynamics.
    Ventre E
    In Silico Biol; 2021; 14(3-4):89-113. PubMed ID: 34897081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
    Vatsa D; Agarwal S
    PLoS One; 2021; 16(5):e0251666. PubMed ID: 33989333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inferring gene regulatory network via fusing gene expression image and RNA-seq data.
    Li X; Ma S; Liu J; Tang J; Guo F
    Bioinformatics; 2022 Mar; 38(6):1716-1723. PubMed ID: 34999771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inference of the gene regulatory network acting downstream of CROWN ROOTLESS 1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation, and root meristem specification and maintenance.
    Lavarenne J; Gonin M; Guyomarc'h S; Rouster J; Champion A; Sallaud C; Laplaze L; Gantet P; Lucas M
    Plant J; 2019 Dec; 100(5):954-968. PubMed ID: 31369175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development.
    Xiong W; Wang C; Zhang X; Yang Q; Shao R; Lai J; Du C
    Plant J; 2017 Dec; 92(6):1143-1156. PubMed ID: 29072883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional inference of gene regulation using single-cell multi-omics.
    Kartha VK; Duarte FM; Hu Y; Ma S; Chew JG; Lareau CA; Earl A; Burkett ZD; Kohlway AS; Lebofsky R; Buenrostro JD
    Cell Genom; 2022 Sep; 2(9):. PubMed ID: 36204155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks.
    Zhou S; Huang YE; Liu H; Zhou X; Yuan M; Hou F; Wang L; Jiang W
    Mol Ther Nucleic Acids; 2021 Mar; 23():682-690. PubMed ID: 33575114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms.
    Morgan D; Studham M; Tjärnberg A; Weishaupt H; Swartling FJ; Nordling TEM; Sonnhammer ELL
    Sci Rep; 2020 Aug; 10(1):14149. PubMed ID: 32843692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.