These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 36304293)

  • 21. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction.
    Gill M; Anderson R; Hu H; Bennamoun M; Petereit J; Valliyodan B; Nguyen HT; Batley J; Bayer PE; Edwards D
    BMC Plant Biol; 2022 Apr; 22(1):180. PubMed ID: 35395721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data.
    Liu L; Meng Q; Weng C; Lu Q; Wang T; Wen Y
    PLoS Comput Biol; 2022 Jul; 18(7):e1010328. PubMed ID: 35839250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning.
    Jiao S; Chen Z; Zhang L; Zhou X; Shi L
    Amino Acids; 2022 May; 54(5):799-809. PubMed ID: 35286461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of atherosclerosis using machine learning based on operations research.
    Chen Z; Yang M; Wen Y; Jiang S; Liu W; Huang H
    Math Biosci Eng; 2022 Mar; 19(5):4892-4910. PubMed ID: 35430846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant Genotype to Phenotype Prediction Using Machine Learning.
    Danilevicz MF; Gill M; Anderson R; Batley J; Bennamoun M; Bayer PE; Edwards D
    Front Genet; 2022; 13():822173. PubMed ID: 35664329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug activity prediction using multiple-instance learning via joint instance and feature selection.
    Zhao Z; Fu G; Liu S; Elokely KM; Doerksen RJ; Chen Y; Wilkins DE
    BMC Bioinformatics; 2013; 14 Suppl 14(Suppl 14):S16. PubMed ID: 24267824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.
    Nielsen AN; Barch DM; Petersen SE; Schlaggar BL; Greene DJ
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2020 Aug; 5(8):791-798. PubMed ID: 31982357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Nitrated Tyrosine Residues in Protein Sequences by Extreme Learning Machine and Feature Selection Methods.
    Chen L; Wang S; Zhang YH; Wei L; Xu X; Huang T; Cai YD
    Comb Chem High Throughput Screen; 2018; 21(6):393-402. PubMed ID: 29848272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Medical data mining in sentiment analysis based on optimized swarm search feature selection.
    Zeng D; Peng J; Fong S; Qiu Y; Wong R
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):1087-1100. PubMed ID: 30206813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach.
    Tai KY; Dhaliwal J; Wong K
    BMC Bioinformatics; 2022 Aug; 23(1):325. PubMed ID: 35934714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data.
    Xu D; Zhang J; Xu H; Zhang Y; Chen W; Gao R; Dehmer M
    BMC Genomics; 2020 Sep; 21(1):650. PubMed ID: 32962626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning Methods for Predicting Disease Status Using Genomic Data.
    Wu Q; Boueiz A; Bozkurt A; Masoomi A; Wang A; DeMeo DL; Weiss ST; Qiu W
    J Biom Biostat; 2018; 9(5):. PubMed ID: 31131151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson's disease.
    Salmanpour MR; Shamsaei M; Rahmim A
    Comput Methods Programs Biomed; 2021 Jul; 206():106131. PubMed ID: 34015757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning-Based Prediction of COVID-19 Mortality With Limited Attributes to Expedite Patient Prognosis and Triage: Retrospective Observational Study.
    Doyle R
    JMIRx Med; 2021; 2(4):e29392. PubMed ID: 34843609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data.
    Grissa D; Pétéra M; Brandolini M; Napoli A; Comte B; Pujos-Guillot E
    Front Mol Biosci; 2016; 3():30. PubMed ID: 27458587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved WOA and its application in feature selection.
    Liu W; Guo Z; Jiang F; Liu G; Wang D; Ni Z
    PLoS One; 2022; 17(5):e0267041. PubMed ID: 35588402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis.
    Inbarani HH; Azar AT; Jothi G
    Comput Methods Programs Biomed; 2014; 113(1):175-85. PubMed ID: 24210167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.