These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36304517)

  • 1. Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9.
    Zhang Z; Wang J; Kuang H; Hou Z; Gong P; Bai M; Zhou S; Yao X; Song S; Yan L; Guan Y
    aBIOTECH; 2022 Jun; 3(2):110-114. PubMed ID: 36304517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of a shattering resistance boosting global dissemination of soybean.
    Funatsuki H; Suzuki M; Hirose A; Inaba H; Yamada T; Hajika M; Komatsu K; Katayama T; Sayama T; Ishimoto M; Fujino K
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17797-802. PubMed ID: 25468966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Control and Geo-Climate Adaptation of Pod Dehiscence Provide Novel Insights into Soybean Domestication.
    Zhang J; Singh AK
    G3 (Bethesda); 2020 Feb; 10(2):545-554. PubMed ID: 31836621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of
    Zaman QU; Wen C; Yuqin S; Mengyu H; Desheng M; Jacqueline B; Baohong Z; Chao L; Qiong H
    CRISPR J; 2021 Jun; 4(3):360-370. PubMed ID: 34152222
    [No Abstract]   [Full Text] [Related]  

  • 5. Development and Validation of SNP and InDel Markers for Pod-Shattering Tolerance in Soybean.
    Seo JH; Dhungana SK; Kang BK; Baek IY; Sung JS; Ko JY; Jung CS; Kim KS; Jun TH
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTL Mapping and Candidate Gene Analysis for Pod Shattering Tolerance in Soybean (
    Seo JH; Kang BK; Dhungana SK; Oh JH; Choi MS; Park JH; Shin SO; Kim HS; Baek IY; Sung JS; Jung CS; Kim KS; Jun TH
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32911865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and use of QTLs controlling pod dehiscence in soybean.
    Funatsuki H; Hajika M; Yamada T; Suzuki M; Hagihara S; Tanaka Y; Fujita S; Ishimoto M; Fujino K
    Breed Sci; 2012 Jan; 61(5):554-8. PubMed ID: 23136494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel selection of loss-of-function alleles of Pdh1 orthologous genes in warm-season legumes for pod indehiscence and plasticity is related to precipitation.
    Yong B; Zhu W; Wei S; Li B; Wang Y; Xu N; Lu J; Chen Q; He C
    New Phytol; 2023 Oct; 240(2):863-879. PubMed ID: 37501344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of the Rice "Easy-to-Shatter" Trait via CRISPR/Cas9-Mediated Mutagenesis of the
    Sheng X; Sun Z; Wang X; Tan Y; Yu D; Yuan G; Yuan D; Duan M
    Front Plant Sci; 2020; 11():619. PubMed ID: 32528496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex CRISPR/Cas9-mediated raffinose synthase gene editing reduces raffinose family oligosaccharides in soybean.
    Cao L; Wang Z; Ma H; Liu T; Ji J; Duan K
    Front Plant Sci; 2022; 13():1048967. PubMed ID: 36457532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Occurrence characteristics and molecular genetic basis of pod shattering in soybean].
    Han DZ; Ren YL; Guo Y; Yan HR; Zhang L; Lu WC; Qiu LJ
    Yi Chuan; 2015 Jun; 37(6):535-43. PubMed ID: 26351049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct identification of a mutation in OsSh1 causing non-shattering in a rice (Oryza sativa L.) mutant cultivar using whole-genome resequencing.
    Li F; Komatsu A; Ohtake M; Eun H; Shimizu A; Kato H
    Sci Rep; 2020 Sep; 10(1):14936. PubMed ID: 32913300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean.
    Lyu X; Li YH; Li Y; Li D; Han C; Hong H; Tian Y; Han L; Liu B; Qiu LJ
    Mol Plant; 2023 Jul; 16(7):1178-1191. PubMed ID: 37433301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in
    Zaman QU; Chu W; Hao M; Shi Y; Sun M; Sang SF; Mei D; Cheng H; Liu J; Li C; Hu Q
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31726660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Legume-wide comparative analysis of pod shatter locus PDH1 reveals phaseoloid specificity, high cowpea expression, and stress responsive genomic context.
    Marsh JI; Nestor BJ; Petereit J; Tay Fernandez CG; Bayer PE; Batley J; Edwards D
    Plant J; 2023 Jul; 115(1):68-80. PubMed ID: 36970933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome edited wheat- current advances for the second green revolution.
    Awan MJA; Pervaiz K; Rasheed A; Amin I; Saeed NA; Dhugga KS; Mansoor S
    Biotechnol Adv; 2022 Nov; 60():108006. PubMed ID: 35732256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Gene Editing in Soybean.
    Bao A; Tran LP; Cao D
    Methods Mol Biol; 2020; 2107():349-364. PubMed ID: 31893458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CRISPR Way for Fast-Forward Crop Domestication.
    Khan MZ; Zaidi SS; Amin I; Mansoor S
    Trends Plant Sci; 2019 Apr; 24(4):293-296. PubMed ID: 30738789
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Łangowski Ł; Goñi O; Marques FS; Hamawaki OT; da Silva CO; Nogueira APO; Teixeira MAJ; Glasenapp JS; Pereira M; O'Connell S
    Front Plant Sci; 2021; 12():631768. PubMed ID: 33719306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.