These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 36304554)
1. Identification of energy metabolism-related biomarkers for risk prediction of heart failure patients using random forest algorithm. Chen H; Jiang R; Huang W; Chen K; Zeng R; Wu H; Yang Q; Guo K; Li J; Wei R; Liao S; Tse HF; Sha W; Zhuo Z Front Cardiovasc Med; 2022; 9():993142. PubMed ID: 36304554 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the molecular mechanisms between heart failure and end-stage renal disease Bian R; Xu X; Li W Front Genet; 2022; 13():1037520. PubMed ID: 36704339 [No Abstract] [Full Text] [Related]
3. WGCNA combined with machine learning algorithms for analyzing key genes and immune cell infiltration in heart failure due to ischemic cardiomyopathy. Kong X; Sun H; Wei K; Meng L; Lv X; Liu C; Lin F; Gu X Front Cardiovasc Med; 2023; 10():1058834. PubMed ID: 37008314 [TBL] [Abstract][Full Text] [Related]
4. Heart failure-related genes associated with oxidative stress and the immune landscape in lung cancer. Duan R; Ye K; Li Y; Sun Y; Zhu J; Ren J Front Immunol; 2023; 14():1167446. PubMed ID: 37275875 [TBL] [Abstract][Full Text] [Related]
5. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. Kolur V; Vastrad B; Vastrad C; Kotturshetti S; Tengli A BMC Cardiovasc Disord; 2021 Jul; 21(1):329. PubMed ID: 34218797 [TBL] [Abstract][Full Text] [Related]
6. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Liu C; Zhou Y; Zhou Y; Tang X; Tang L; Wang J Comput Biol Med; 2023 Jan; 152():106388. PubMed ID: 36470144 [TBL] [Abstract][Full Text] [Related]
7. Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning. Zhang Q; Guo Y; Zhang B; Liu H; Peng Y; Wang D; Zhang D Front Cardiovasc Med; 2022; 9():939972. PubMed ID: 35958412 [TBL] [Abstract][Full Text] [Related]
8. Integrated Gene Expression Profiling Analysis Reveals Potential Molecular Mechanisms and Candidate Biomarkers for Early Risk Stratification and Prediction of STEMI and Post-STEMI Heart Failure Patients. Xu J; Yang Y Front Cardiovasc Med; 2021; 8():736497. PubMed ID: 34957234 [No Abstract] [Full Text] [Related]
9. Identification of crucial genes related to heart failure based on GEO database. Chen Y; Xue J; Yan X; Fang DG; Li F; Tian X; Yan P; Feng Z BMC Cardiovasc Disord; 2023 Jul; 23(1):376. PubMed ID: 37507655 [TBL] [Abstract][Full Text] [Related]
10. Identification of Shared Signature Genes and Immune Microenvironment Subtypes for Heart Failure and Chronic Kidney Disease Based on Machine Learning. Wang X; Rao J; Chen X; Wang Z; Zhang Y J Inflamm Res; 2024; 17():1873-1895. PubMed ID: 38533476 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic potential of energy metabolism-related genes in heart failure with preserved ejection fraction. Gou Q; Zhao Q; Dong M; Liang L; You H Front Endocrinol (Lausanne); 2023; 14():1296547. PubMed ID: 38089628 [TBL] [Abstract][Full Text] [Related]
12. Identification of potential biomarkers and immune-related pathways related to immune infiltration in patients with acute myocardial infarction. Lin Z; Xu H; Chen Y; Zhang X; Yang J Transpl Immunol; 2022 Oct; 74():101652. PubMed ID: 35764238 [TBL] [Abstract][Full Text] [Related]
13. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning. Wang X; Rao J; Zhang L; Liu X; Zhang Y Heliyon; 2024 Mar; 10(6):e27049. PubMed ID: 38509983 [TBL] [Abstract][Full Text] [Related]
14. Identification of m Ma C; Tu D; Xu Q; Wu Y; Song X; Guo Z; Zhao X Clin Epigenetics; 2023 Feb; 15(1):22. PubMed ID: 36782329 [TBL] [Abstract][Full Text] [Related]
15. Identification of the potential biomarkers associated with circadian rhythms in heart failure. Sun Q; Zhao J; Liu L; Wang X; Gu X PeerJ; 2023; 11():e14734. PubMed ID: 36699999 [TBL] [Abstract][Full Text] [Related]
16. Machine learning algorithms assisted identification of post-stroke depression associated biological features. Zhang X; Wang X; Wang S; Zhang Y; Wang Z; Yang Q; Wang S; Cao R; Yu B; Zheng Y; Dang Y Front Neurosci; 2023; 17():1146620. PubMed ID: 36968495 [TBL] [Abstract][Full Text] [Related]
17. Identification of CALU and PALLD as Potential Biomarkers Associated With Immune Infiltration in Heart Failure. Liu X; Xu S; Li Y; Chen Q; Zhang Y; Peng L Front Cardiovasc Med; 2021; 8():774755. PubMed ID: 34926621 [No Abstract] [Full Text] [Related]
18. NR4A2 may be a potential diagnostic biomarker for myocardial infarction: A comprehensive bioinformatics analysis and experimental validation. Wei D; Qi J; Wang Y; Li L; Yang G; He X; Zhang Z Front Immunol; 2022; 13():1061800. PubMed ID: 36618351 [TBL] [Abstract][Full Text] [Related]
19. Regulatory mechanism of fibrosis-related genes in patients with heart failure. Tao Y; Gao C; Qian D; Cao D; Han L; Yang L Front Genet; 2022; 13():1032572. PubMed ID: 36324504 [No Abstract] [Full Text] [Related]
20. Role of serum cytokines in the prediction of heart failure in patients with coronary artery disease. Hou Q; Sun Z; Zhao L; Liu Y; Zhang J; Huang J; Luo Y; Xiao Y; Hu Z; Shen A ESC Heart Fail; 2023 Oct; 10(5):3102-3113. PubMed ID: 37608687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]