BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 36304749)

  • 1. Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms.
    Garavand A; Salehnasab C; Behmanesh A; Aslani N; Zadeh AH; Ghaderzadeh M
    J Healthc Eng; 2022; 2022():5359540. PubMed ID: 36304749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer.
    Ozcan I; Aydin H; Cetinkaya A
    Asian Pac J Cancer Prev; 2022 Oct; 23(10):3287-3297. PubMed ID: 36308351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing machine learning algorithms to predict COVID‑19 mortality using a dataset including chest computed tomography severity score data.
    Zakariaee SS; Naderi N; Ebrahimi M; Kazemi-Arpanahi H
    Sci Rep; 2023 Jul; 13(1):11343. PubMed ID: 37443373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database.
    Hao N; Sun P; Zhao W; Li X
    Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning.
    Mikhailova V; Anbarjafari G
    Med Biol Eng Comput; 2022 Sep; 60(9):2589-2600. PubMed ID: 35781590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polygenic risk scores outperform machine learning methods in predicting coronary artery disease status.
    Gola D; Erdmann J; Müller-Myhsok B; Schunkert H; König IR
    Genet Epidemiol; 2020 Mar; 44(2):125-138. PubMed ID: 31922285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Evaluation of Machine Learning Algorithm for Classification of Unintended Pregnancy among Married Women in Bangladesh.
    Hossain MI; Habib MJ; Saleheen AAS; Kamruzzaman M; Rahman A; Roy S; Amit Hasan M; Haq I; Methun MIH; Nayan MIH; Rukonozzaman Rukon M
    J Healthc Eng; 2022; 2022():1460908. PubMed ID: 35669979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive Coronary Artery Disease Screening Based on Electrocardiogram Characteristics and Clinical Risk Factors.
    Jahnavi D; Dash A; Bs R; Ghosh N; Patra A; Mandana KM; Khandelwal S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Machine Learning Model for Detection of Coronary Artery Disease Using Noninvasive Clinical Parameters.
    Sayadi M; Varadarajan V; Sadoughi F; Chopannejad S; Langarizadeh M
    Life (Basel); 2022 Nov; 12(11):. PubMed ID: 36431068
    [No Abstract]   [Full Text] [Related]  

  • 13. Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization.
    Mohammedqasim H; Mohammedqasem R; Ata O; Alyasin EI
    Medicina (Kaunas); 2022 Nov; 58(12):. PubMed ID: 36556946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Classification Algorithms for Various DNA Microarray Data.
    Kim J; Yoon Y; Park HJ; Kim YH
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of genetic classification model for coronary atherosclerosis heart disease using three machine learning methods.
    Peng W; Sun Y; Zhang L
    BMC Cardiovasc Disord; 2022 Feb; 22(1):42. PubMed ID: 35151267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography.
    Golpour P; Ghayour-Mobarhan M; Saki A; Esmaily H; Taghipour A; Tajfard M; Ghazizadeh H; Moohebati M; Ferns GA
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the impact of feature selection methods on machine learning algorithms for heart disease prediction.
    Noroozi Z; Orooji A; Erfannia L
    Sci Rep; 2023 Dec; 13(1):22588. PubMed ID: 38114600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of machine learning approaches for radioisotope identification using NaI(TI) gamma-ray spectrum.
    Qi S; Zhao W; Chen Y; Chen W; Li J; Zhao H; Xiao W; Ai X; Zhang K; Wang S
    Appl Radiat Isot; 2022 Aug; 186():110212. PubMed ID: 35569263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of explainable machine-learning models for carotid atherosclerosis early screening.
    Yun K; He T; Zhen S; Quan M; Yang X; Man D; Zhang S; Wang W; Han X
    J Transl Med; 2023 May; 21(1):353. PubMed ID: 37246225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.