These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TNF receptor superfamily member 13b (TNFRSF13B) hemizygosity reveals transmembrane activator and CAML interactor haploinsufficiency at later stages of B-cell development. Romberg N; Virdee M; Chamberlain N; Oe T; Schickel JN; Perkins T; Cantaert T; Rachid R; Rosengren S; Palazzo R; Geha R; Cunningham-Rundles C; Meffre E J Allergy Clin Immunol; 2015 Nov; 136(5):1315-25. PubMed ID: 26100089 [TBL] [Abstract][Full Text] [Related]
3. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. Kato A; Peters A; Suh L; Carter R; Harris KE; Chandra R; Conley D; Grammer LC; Kern R; Schleimer RP J Allergy Clin Immunol; 2008 Jun; 121(6):1385-92, 1392.e1-2. PubMed ID: 18410958 [TBL] [Abstract][Full Text] [Related]
4. TNFRSF13B/TACI alterations in Greek patients with antibody deficiencies. Speletas M; Mamara A; Papadopoulou-Alataki E; Iordanakis G; Liadaki K; Bardaka F; Kanariou M; Germenis AE J Clin Immunol; 2011 Aug; 31(4):550-9. PubMed ID: 21547394 [TBL] [Abstract][Full Text] [Related]
5. Heterozygous alterations of TNFRSF13B/TACI in tonsillar hypertrophy and sarcoidosis. Speletas M; Salzer U; Florou Z; Petinaki E; Daniil Z; Bardaka F; Gourgoulianis KI; Skoulakis C; Germenis AE Clin Dev Immunol; 2013; 2013():532437. PubMed ID: 23956760 [TBL] [Abstract][Full Text] [Related]
6. Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps. Soklic TK; Rijavec M; Silar M; Koren A; Kern I; Hocevar-Boltezar I; Korosec P Radiol Oncol; 2019 Jul; 53(3):323-330. PubMed ID: 31326962 [TBL] [Abstract][Full Text] [Related]
7. Methylation of TNFRSF13B and TNFRSF13C in duodenal mucosa in canine inflammatory bowel disease and its association with decreased mucosal IgA expression. Maeda S; Ohno K; Fujiwara-Igarashi A; Tomiyasu H; Fujino Y; Tsujimoto H Vet Immunol Immunopathol; 2014 Jul; 160(1-2):97-106. PubMed ID: 24814046 [TBL] [Abstract][Full Text] [Related]
8. Novel mutations in TACI (TNFRSF13B) causing common variable immunodeficiency. Mohammadi J; Liu C; Aghamohammadi A; Bergbreiter A; Du L; Lu J; Rezaei N; Amirzargar AA; Moin M; Salzer U; Pan-Hammarström Q; Hammarström L J Clin Immunol; 2009 Nov; 29(6):777-85. PubMed ID: 19629655 [TBL] [Abstract][Full Text] [Related]
9. Hypomethylation of the IL8 promoter in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps. Li J; Jiao J; Wang M; Gao Y; Li Y; Wang Y; Zhang Y; Wang X; Zhang L J Allergy Clin Immunol; 2019 Oct; 144(4):993-1003.e12. PubMed ID: 31330222 [TBL] [Abstract][Full Text] [Related]
10. Tc17/IL-17A Up-Regulated the Expression of MMP-9 via NF-κB Pathway in Nasal Epithelial Cells of Patients With Chronic Rhinosinusitis. Chen X; Chang L; Li X; Huang J; Yang L; Lai X; Huang Z; Wang Z; Wu X; Zhao J; Bellanti JA; Zheng SG; Zhang G Front Immunol; 2018; 9():2121. PubMed ID: 30283454 [TBL] [Abstract][Full Text] [Related]
11. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. Wei Y; Xia W; Ye X; Fan Y; Shi J; Wen W; Yang P; Li H; J Allergy Clin Immunol; 2014 Feb; 133(2):420-8. PubMed ID: 24342548 [TBL] [Abstract][Full Text] [Related]
12. TGF-β1 Induces Epithelial-Mesenchymal Transition of Chronic Sinusitis with Nasal Polyps through MicroRNA-21. Li X; Li C; Zhu G; Yuan W; Xiao ZA Int Arch Allergy Immunol; 2019; 179(4):304-319. PubMed ID: 30982052 [TBL] [Abstract][Full Text] [Related]
13. Enhanced expression of SAM-pointed domain-containing Ets-like factor in chronic rhinosinusitis with nasal polyps. Bai J; Miao B; Wu X; Luo X; Ma R; Zhang J; Li L; Shi J; Li H Laryngoscope; 2015 Mar; 125(3):E97-103. PubMed ID: 25376946 [TBL] [Abstract][Full Text] [Related]
15. Differing roles for TGF-β/Smad signaling in osteitis in chronic rhinosinusitis with and without nasal polyps. Wang M; Ye T; Liang N; Huang Z; Cui S; Li Y; Huang Q; Zhou B Am J Rhinol Allergy; 2015; 29(5):e152-9. PubMed ID: 26265084 [TBL] [Abstract][Full Text] [Related]
16. Role of the aryl hydrocarbon receptor in the pathogenesis of chronic rhinosinusitis with nasal polyps. Wei P; Hu GH; Kang HY; Yao HB; Kou W; Zhang C; Hong SL Inflammation; 2014 Apr; 37(2):387-95. PubMed ID: 24092408 [TBL] [Abstract][Full Text] [Related]
17. The influence of nasal bacterial microbiome diversity on the pathogenesis and prognosis of chronic rhinosinusitis patients with polyps. Gan W; Zhang H; Yang F; Liu S; Liu F; Meng J Eur Arch Otorhinolaryngol; 2021 Apr; 278(4):1075-1088. PubMed ID: 32960349 [TBL] [Abstract][Full Text] [Related]
18. Transmembrane activator and CAML interactor (TACI) haploinsufficiency results in B-cell dysfunction in patients with Smith-Magenis syndrome. Chinen J; Martinez-Gallo M; Gu W; Cols M; Cerutti A; Radigan L; Zhang L; Potocki L; Withers M; Lupski JR; Cunningham-Rundles C J Allergy Clin Immunol; 2011 Jun; 127(6):1579-86. PubMed ID: 21514638 [TBL] [Abstract][Full Text] [Related]
19. Expression of IL-17 and syndecan-1 in nasal polyps and their correlation with nasal polyps. Gong GQ; Ren FF; Wang YJ; Wan L; Chen S; Yuan J; Yang CM; Liu BH; Kong WJ J Huazhong Univ Sci Technolog Med Sci; 2017 Jun; 37(3):412-418. PubMed ID: 28585128 [TBL] [Abstract][Full Text] [Related]
20. Elevated microRNA-21 Is a Brake of Inflammation Involved in the Development of Nasal Polyps. Liu R; Du J; Zhou J; Zhong B; Ba L; Zhang J; Liu Y; Liu S Front Immunol; 2021; 12():530488. PubMed ID: 33936025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]