These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36305383)

  • 1. A Porous Gelatin Methacrylate-Based Material for 3D Cell-Laden Constructs.
    Bova L; Maggiotto F; Micheli S; Giomo M; Sgarbossa P; Gagliano O; Falcone D; Cimetta E
    Macromol Biosci; 2023 Feb; 23(2):e2200357. PubMed ID: 36305383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.
    Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P
    Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.
    Bertassoni LE; Cardoso JC; Manoharan V; Cristino AL; Bhise NS; Araujo WA; Zorlutuna P; Vrana NE; Ghaemmaghami AM; Dokmeci MR; Khademhosseini A
    Biofabrication; 2014 Jun; 6(2):024105. PubMed ID: 24695367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
    Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K
    Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
    Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X
    Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional printing of cell-laden microporous constructs using blended bioinks.
    Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K
    J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling.
    de Barros NR; Gomez A; Ermis M; Falcone N; Haghniaz R; Young P; Gao Y; Aquino AF; Li S; Niu S; Chen R; Huang S; Zhu Y; Eliahoo P; Sun A; Khorsandi D; Kim J; Kelber J; Khademhosseini A; Kim HJ; Li B
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37348491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications.
    Kallingal N; Ramakrishnan R; Krishnan V K
    J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation.
    Ronzoni FL; Aliberti F; Scocozza F; Benedetti L; Auricchio F; Sampaolesi M; Cusella G; Redwan IN; Ceccarelli G; Conti M
    J Tissue Eng Regen Med; 2022 May; 16(5):484-495. PubMed ID: 35246958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs.
    Xu H; Casillas J; Krishnamoorthy S; Xu C
    Biomed Mater; 2020 Aug; 15(5):055021. PubMed ID: 32438356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
    Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering.
    Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P
    Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.