These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36305400)

  • 1. [Advances in the methods of phosphopeptide enrichment and separation in phosphoproteomic research].
    Li J; Chen X; Yang F
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3648-3658. PubMed ID: 36305400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized soluble nanopolymers for phosphoproteome analysis.
    Iliuk A; Jayasundera K; Schluttenhofer R; Tao WA
    Methods Mol Biol; 2011; 790():277-85. PubMed ID: 21948422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis.
    Mamone G; Picariello G; Ferranti P; Addeo F
    Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis.
    Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H
    J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Phosphoproteomic Using Titanium Dioxide Micro-Columns and Label-Free Quantitation.
    Barrios-Llerena ME; Le Bihan T
    Methods Mol Biol; 2019; 1977():35-42. PubMed ID: 30980321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis.
    Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of phosphopeptide enrichment techniques for phosphoproteome analysis.
    Han G; Ye M; Zou H
    Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphopeptide Enrichment from Bacterial Samples Utilizing Titanium Oxide Affinity Chromatography.
    Soufi B; Täumer C; Semanjski M; Macek B
    Methods Mol Biol; 2018; 1841():231-247. PubMed ID: 30259490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate.
    Ahmed A; Raja VJ; Cavaliere P; Dephoure N
    J Proteome Res; 2019 Mar; 18(3):1411-1417. PubMed ID: 30576142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC.
    Tape CJ; Worboys JD; Sinclair J; Gourlay R; Vogt J; McMahon KM; Trost M; Lauffenburger DA; Lamont DJ; Jørgensen C
    Anal Chem; 2014 Oct; 86(20):10296-302. PubMed ID: 25233145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of four phosphopeptide enrichment strategies for mass spectrometry-based proteomic analysis.
    Ino Y; Kinoshita E; Kinoshita-Kikuta E; Akiyama T; Nakai Y; Nishino K; Osada M; Ryo A; Hirano H; Koike T; Kimura Y
    Proteomics; 2022 Apr; 22(7):e2100216. PubMed ID: 34932266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Evaluation of Different TiO
    Li J; Wang J; Yan Y; Li N; Qing X; Tuerxun A; Guo X; Chen X; Yang F
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.