These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36305457)

  • 21. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting drug-disease associations through layer attention graph convolutional network.
    Yu Z; Huang F; Zhao X; Xiao W; Zhang W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33078832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-drug interaction prediction with learnable size-adaptive molecular substructures.
    Nyamabo AK; Yu H; Liu Z; Shi JY
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34695842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational drug repositioning using low-rank matrix approximation and randomized algorithms.
    Luo H; Li M; Wang S; Liu Q; Li Y; Wang J
    Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning from low-rank multimodal representations for predicting disease-drug associations.
    Hu P; Huang YA; Mei J; Leung H; Chen ZH; Kuang ZM; You ZH; Hu L
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 1):308. PubMed ID: 34736437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network.
    Zhang W; Yue X; Huang F; Liu R; Chen Y; Ruan C
    Methods; 2018 Aug; 145():51-59. PubMed ID: 29879508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures.
    Yan C; Feng L; Wang W; Wang J; Zhang G; Luo J
    Curr Mol Med; 2020; 20(6):442-451. PubMed ID: 31729291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction.
    Xuan P; Wang D; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34634106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Neural Metric Factorization for Computational Drug Repositioning.
    Yang X; Yang G; Chu J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):731-741. PubMed ID: 35061591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A network-based drug repurposing method via non-negative matrix factorization.
    Sadeghi S; Lu J; Ngom A
    Bioinformatics; 2022 Feb; 38(5):1369-1377. PubMed ID: 34875000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures.
    Shtar G; Rokach L; Shapira B
    PLoS One; 2019; 14(8):e0219796. PubMed ID: 31369568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network.
    Jiang HJ; Huang YA; You ZH
    Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlap matrix completion for predicting drug-associated indications.
    Yang M; Luo H; Li Y; Wu FX; Wang J
    PLoS Comput Biol; 2019 Dec; 15(12):e1007541. PubMed ID: 31869322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.