BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36305483)

  • 21. Electronic absorption spectra and nonlinear optical properties of ruthenium acetylide complexes: a DFT study toward the designing of new high NLO response compounds.
    Janjua MR; Mahmood A; Nazar MF; Yang Z; Pan S
    Acta Chim Slov; 2014; 61(2):382-90. PubMed ID: 25125122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structure and second-order nonlinear optical property of chiral peropyrenes.
    Gong L; Liu C; Du X; Wang C; Yang G
    J Mol Model; 2019 Jul; 25(8):220. PubMed ID: 31300896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: first theoretical framework of POM-based heterocyclic aromatic rings.
    Janjua MR
    Inorg Chem; 2012 Nov; 51(21):11306-14. PubMed ID: 23075454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Twist on Nonlinear Optics: Understanding the Unique Response of π-Twisted Chromophores.
    Lou AJ; Marks TJ
    Acc Chem Res; 2019 May; 52(5):1428-1438. PubMed ID: 31038918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-Photon Absorption Enhancement by the Inclusion of a Tropone Ring in Distorted Nanographene Ribbons.
    Castro-Fernández S; Cruz CM; Mariz IFA; Márquez IR; Jiménez VG; Palomino-Ruiz L; Cuerva JM; Maçôas E; Campaña AG
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):7139-7145. PubMed ID: 32159924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical study on the electronic structure and second-order nonlinear optical properties of benzannulated or selenophene-annulated expanded helicenes.
    Gong LJ; Liu CY; Ma C; Lin WF; Lv JK; Zhang XY
    RSC Adv; 2019 May; 9(30):17382-17390. PubMed ID: 35519869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials.
    Muhammad S; Nakano M; Al-Sehemi AG; Kitagawa Y; Irfan A; Chaudhry AR; Kishi R; Ito S; Yoneda K; Fukuda K
    Nanoscale; 2016 Oct; 8(42):17998-18020. PubMed ID: 27722408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. V-Shaped Methylpyrimidinium Chromophores for Nonlinear Optics.
    Achelle S; Verbitskiy EV; Fecková M; Bureš F; Barsella A; Robin-le Guen F
    Chempluschem; 2021 May; 86(5):758-762. PubMed ID: 33973733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modular Synthesis of Structurally Diverse Azulene-Embedded Polycyclic Aromatic Hydrocarbons by Knoevenagel-Type Condensation.
    Liu R; Fu Y; Wu F; Liu F; Zhang JJ; Yang L; Popov AA; Ma J; Feng X
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202219091. PubMed ID: 36877829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration.
    Song S; Pinar Solé A; Matěj A; Li G; Stetsovych O; Soler D; Yang H; Telychko M; Li J; Kumar M; Chen Q; Edalatmanesh S; Brabec J; Veis L; Wu J; Jelinek P; Lu J
    Nat Chem; 2024 Jun; 16(6):938-944. PubMed ID: 38374456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox-switchable second-order nonlinear optical responses of push-pull monotetrathiafulvalene-metalloporphyrins.
    Liu CG; Guan W; Song P; Yan LK; Su ZM
    Inorg Chem; 2009 Jul; 48(14):6548-54. PubMed ID: 19522472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First principles study of electronic and nonlinear optical properties of A-D-π-A and D-A-D-π-A configured compounds containing novel quinoline-carbazole derivatives.
    Khalid M; Ali A; Jawaria R; Asghar MA; Asim S; Khan MU; Hussain R; Fayyaz Ur Rehman M; Ennis CJ; Akram MS
    RSC Adv; 2020 Jun; 10(37):22273-22283. PubMed ID: 35516655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies.
    Biswas K; Chen Q; Obermann S; Ma J; Soler-Polo D; Melidonie J; Barragán A; Sánchez-Grande A; Lauwaet K; Gallego JM; Miranda R; Écija D; Jelínek P; Feng X; Urgel JI
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202318185. PubMed ID: 38299925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A DFT study of the second-order nonlinear optical properties of Ru(II) polypyridine complexes.
    Chen Y; Zhang Y; Shen Y; Zhao Y; Qiu YQ
    Phys Chem Chem Phys; 2022 Aug; 24(30):18217-18226. PubMed ID: 35867024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of second-order nonlinear optical response in boron nitride nanocone: Li-doped effect.
    Wang WY; Ma NN; Wang CH; Zhang MY; Sun SL; Qiu YQ
    J Mol Graph Model; 2014 Mar; 48():28-35. PubMed ID: 24366003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering the Role of Alkali Metals (Li, Na, K) Doping for Triggering Nonlinear Optical (NLO) Properties of T-Graphene Quantum Dots: Toward the Development of Giant NLO Response Materials.
    Sarwar S; Yaqoob J; Khan MU; Hussain R; Zulfiqar S; Anwar A; Assiri MA; Imran M; Ibrahim MM; Mersal GAM; Elnaggar AY
    ACS Omega; 2022 Jul; 7(28):24396-24414. PubMed ID: 35874249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theoretical study on the efficient reversible redox-based switching of the second-order polarizabilities of two-dimensional nonlinear optical-active donor-acceptor phenanthroline-hexamolybdate.
    Song P; Yan LK; Guan W; Liu CG; Yao C; Su ZM
    J Mol Graph Model; 2010 Aug; 29(1):13-20. PubMed ID: 20452791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical investigation on second-order nonlinear optical properties of ruthenium alkynyl-dihydroazulene/vinylheptafulvene complexes.
    Jing LX; Wang L; Ye JT; Chen ZZ; Chen H; Qiu YQ
    J Mol Graph Model; 2017 Oct; 77():363-371. PubMed ID: 28946068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new scheme for significant enhancement of the second order nonlinear optical response from molecules to ordered aggregates.
    Li W; Zhou X; Tian WQ; Sun X
    Phys Chem Chem Phys; 2013 Feb; 15(6):1810-4. PubMed ID: 23296027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of Azulene-Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction.
    Han Y; Xue Z; Li G; Gu Y; Ni Y; Dong S; Chi C
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9026-9031. PubMed ID: 32096589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.