These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36305483)

  • 41. Nonplanar donor-acceptor chiral molecules with large second-order optical nonlinearities: 1,1,4,4-tetracyanobuta-1,3-diene derivatives.
    Si Y; Yang G
    J Phys Chem A; 2014 Feb; 118(6):1094-102. PubMed ID: 24467250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design of A-D-A-Type Organic Third-Order Nonlinear Optical Materials Based on Benzodithiophene: A DFT Study.
    Gong P; An L; Tong J; Liu X; Liang Z; Li J
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability.
    Suponitsky KY; Masunov AE
    J Chem Phys; 2013 Sep; 139(9):094310. PubMed ID: 24028120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of spiral framework on nonlinear optical materials.
    Hu YY; Sun SL; Tian WT; Tian WQ; Xu HL; Su ZM
    Chemphyschem; 2014 Apr; 15(5):929-34. PubMed ID: 24677788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Azo-azulene derivatives as second-order nonlinear optical chromophores.
    Lacroix PG; Malfant I; Iftime G; Razus AC; Nakatani K; Delaire JA
    Chemistry; 2000 Jul; 6(14):2599-608. PubMed ID: 10961405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Designing of gigantic first-order hyperpolarizability molecules via joining the promising organic fragments: a DFT study.
    Kumar R; Yadav SK; Seth R; Singh A
    J Mol Model; 2022 Dec; 29(1):5. PubMed ID: 36481956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Push-pull D-π-Ru-π-A chromophores: synthesis and electrochemical, photophysical and second-order nonlinear optical properties.
    Durand RJ; Gauthier S; Achelle S; Groizard T; Kahlal S; Saillard JY; Barsella A; Le Poul N; Le Guen FR
    Dalton Trans; 2018 Mar; 47(11):3965-3975. PubMed ID: 29464264
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Second-order nonlinear polarizability of "Push-Pull" chromophores. A decade of progress in donor-π-acceptor materials.
    Kaur P; Singh K
    Chem Rec; 2022 Jun; 22(6):e202200024. PubMed ID: 35352466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Helical Nanographenes Containing an Azulene Unit: Synthesis, Crystal Structures, and Properties.
    Ma J; Fu Y; Dmitrieva E; Liu F; Komber H; Hennersdorf F; Popov AA; Weigand JJ; Liu J; Feng X
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5637-5642. PubMed ID: 31867754
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of Alkali Metal Doping and BN Substitution on the Second-Order Nonlinear Optical Properties of Graphyne: A Theoretical Perspective.
    Hou N; Fang XH
    Inorg Chem; 2022 Jul; 61(28):10756-10767. PubMed ID: 35794725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New acceptor-bridge-donor strategy for enhancing NLO response with long-range excess electron transfer from the NH2...M/M3O donor (M = Li, Na, K) to inside the electron hole cage C20F19 acceptor through the unusual σ chain bridge (CH2)4.
    Bai Y; Zhou ZJ; Wang JJ; Li Y; Wu D; Chen W; Li ZR; Sun CC
    J Phys Chem A; 2013 Apr; 117(13):2835-43. PubMed ID: 23488897
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tailoring transition metal complexes for nonlinear optics applications. 2. A theoretical investigation of the second-order nonlinear optical properties of M(CO)(5)L complexes (M = Cr, W; L = Py, PyCHO, Pyz, PyzBF(3), BPE, BPEBF(3)).
    Bruschi M; Fantucci P; Pizzotti M
    J Phys Chem A; 2005 Oct; 109(42):9637-45. PubMed ID: 16866417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of second-order nonlinear optical responses in a series of V-shaped binuclear platinum(ii) complexes.
    Durand RJ; Achelle S; Robin-Le Guen F; Caytan E; Le Poul N; Barsella A; Guevara Level P; Jacquemin D; Gauthier S
    Dalton Trans; 2021 Apr; 50(13):4623-4633. PubMed ID: 33710218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Charge transfer and first hyperpolarizability: cage-like radicals C59X and lithium encapsulated Li@C59X (X=B, N).
    Gao FW; Zhong RL; Sun SL; Xu HL; Zhao L; Su ZM
    J Mol Model; 2015 Oct; 21(10):258. PubMed ID: 26369918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Introducing the triangular BN nanodot or its cooperation with the edge-modification via the electron-donating/withdrawing group to achieve the large first hyperpolarizability in a carbon nanotube system.
    Zhang X; Yu G; Huang X; Chen W
    Phys Chem Chem Phys; 2017 Jul; 19(27):17834-17844. PubMed ID: 28660934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local Polarity-Induced Assembly of Second-Order Nonlinear Optical Materials.
    Li Y; Luo J; Zhao S
    Acc Chem Res; 2022 Dec; 55(23):3460-3469. PubMed ID: 36410376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonlinear optical properties and optimization strategies of D-π-A type phenylamine derivatives in the near-infrared region.
    Wei J; Yang J; Li Y; Song Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121539. PubMed ID: 35777228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization.
    Ozaki K; Kawasumi K; Shibata M; Ito H; Itami K
    Nat Commun; 2015 Feb; 6():6251. PubMed ID: 25683787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An intramolecular-locked strategy for designing nonlinear optical materials with remarkable first hyperpolarizability.
    Li B; Xiao T; Shen H; Deng M; Gu FL
    Phys Chem Chem Phys; 2022 Sep; 24(36):21800-21805. PubMed ID: 36056682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Triskelion-Shaped Saddle-Helix Hybrid Nanographene.
    Cruz CM; Márquez IR; Castro-Fernández S; Cuerva JM; Maçôas E; Campaña AG
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8068-8072. PubMed ID: 30968999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.