These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36305686)

  • 1. A reverse chromatin immunoprecipitation technique based on the CRISPR-dCas9 system.
    Wang Z; He Z; Liu Z; Qu M; Gao C; Wang C; Wang Y
    Plant Physiol; 2023 Mar; 191(3):1505-1519. PubMed ID: 36305686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enChIP system for the analysis of bacterial genome functions.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Jun; 11(1):387. PubMed ID: 29898790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis.
    Fujita T; Kitaura F; Oji A; Tanigawa N; Yuno M; Ikawa M; Taniuchi I; Fujii H
    Genes Cells; 2018 Apr; 23(4):318-325. PubMed ID: 29480524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Methods Mol Biol; 2015; 1288():43-52. PubMed ID: 25827874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSCV-based retroviral plasmids expressing 3xFLAG-Sp-dCas9 for enChIP analysis.
    Yuno M; Nagata S; Fujita T; Fujii H
    Biol Methods Protoc; 2021; 6(1):bpab013. PubMed ID: 34409168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases.
    Lin L; Liu Y; Xu F; Huang J; Daugaard TF; Petersen TS; Hansen B; Ye L; Zhou Q; Fang F; Yang L; Li S; Fløe L; Jensen KT; Shrock E; Chen F; Yang H; Wang J; Liu X; Xu X; Bolund L; Nielsen AL; Luo Y
    Gigascience; 2018 Mar; 7(3):1-19. PubMed ID: 29635374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Biochem Biophys Res Commun; 2013 Sep; 439(1):132-6. PubMed ID: 23942116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enChIP system for the analysis of genome functions in budding yeast.
    Fujii H; Fujita T
    Biol Methods Protoc; 2022; 7(1):bpac025. PubMed ID: 36325175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of specific DNA species using the CRISPR system.
    Fujita T; Fujii H
    Biol Methods Protoc; 2019; 4(1):bpz008. PubMed ID: 32395626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Karlson CKS; Mohd-Noor SN; Nolte N; Tan BC
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advancements in CRISPR-Cas toolbox for imaging applications.
    Singh V; Jain M
    Crit Rev Biotechnol; 2022 Jun; 42(4):508-531. PubMed ID: 34407706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational gRNA design based on transcription factor binding data.
    Bergenholm D; Dabirian Y; Ferreira R; Siewers V; David F; Nielsen J
    Synth Biol (Oxf); 2021; 6(1):ysab014. PubMed ID: 34712839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in
    Ye W; Liu T; Zhu M; Zhang W; Huang Z; Li S; Li H; Kong Y; Chen Y
    Front Bioeng Biotechnol; 2019; 7():334. PubMed ID: 32039165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.