These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36305757)

  • 1. Reply to the 'Comment on "Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions"' by J.-F. Berret, DOI: 10.1039/d2sm00653g.
    Ciutara CO; Zasadzinski JA
    Soft Matter; 2022 Nov; 18(44):8520-8523. PubMed ID: 36305757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions" by C. O. Ciutara and J. A. Zasadzinski,
    Berret JF
    Soft Matter; 2022 Nov; 18(44):8514-8519. PubMed ID: 36300502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions.
    Ciutara CO; Zasadzinski JA
    Soft Matter; 2021 May; 17(20):5170-5182. PubMed ID: 33929473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the rheology of pulmonary surfactant: Effects of concentration and consequences for the surfactant replacement therapy.
    Thai LPA; Mousseau F; Oikonomou EK; Berret JF
    Colloids Surf B Biointerfaces; 2019 Jun; 178():337-345. PubMed ID: 30897431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions.
    King DM; Wang Z; Kendig JW; Palmer HJ; Holm BA; Notter RH
    Chem Phys Lipids; 2001 Jul; 112(1):11-9. PubMed ID: 11518568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration.
    Chen CM; Chang CH; Chao CH; Wang MH; Yeh TF
    Drug Deliv; 2019 Dec; 26(1):604-611. PubMed ID: 31204848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity behavior of silica suspensions flocculated by associating polymers.
    Kamibayashi M; Ogura H; Otsubo Y
    J Colloid Interface Sci; 2005 Oct; 290(2):592-7. PubMed ID: 15939431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of surfactant effect on aggregates in model aerosol propellent suspensions.
    Bower C; Washington C; Purewal TS
    J Pharm Pharmacol; 1996 Apr; 48(4):337-41. PubMed ID: 8794979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.
    Allahham A; Stewart P; Marriott J; Mainwaring DE
    Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing interactions between soluble silk fibroin and capryl glucoside for design of a natural and high-performance co-surfactant system.
    Maxwell R; Costache MC; Giarrosso A; Bosques C; Amin S
    Int J Cosmet Sci; 2021 Feb; 43(1):68-77. PubMed ID: 33259636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A freeze-fracture transmission electron microscopy and small angle x-ray diffraction study of the effects of albumin, serum, and polymers on clinical lung surfactant microstructure.
    Braun A; Stenger PC; Warriner HE; Zasadzinski JA; Lu KW; Taeusch HW
    Biophys J; 2007 Jul; 93(1):123-39. PubMed ID: 17416614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance sulphate-free cleansers: Surface activity, foaming and rheology.
    Yorke K; Potanin A; Jogun S; Morgan A; Shen H; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):636-652. PubMed ID: 34608651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelasticity of single wall carbon nanotube suspensions.
    Hough LA; Islam MF; Janmey PA; Yodh AG
    Phys Rev Lett; 2004 Oct; 93(16):168102. PubMed ID: 15525036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of surface properties and physiological effects of a synthetic and a natural surfactant in preterm rabbits.
    Corcoran JD; Berggren P; Sun B; Halliday HL; Robertson B; Curstedt T
    Arch Dis Child Fetal Neonatal Ed; 1994 Nov; 71(3):F165-9. PubMed ID: 7820710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Nanoparticles on the Bulk Shear Viscosity of a Lung Surfactant Fluid.
    Thai LP; Mousseau F; Oikonomou E; Radiom M; Berret JF
    ACS Nano; 2020 Jan; 14(1):466-475. PubMed ID: 31854968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Advanced Material with Synergistic Viscoelasticity Enhancement of Hydrophobically Associated Water-Soluble Polymer and Surfactant.
    Wang T; Kang W; Yang H; Li Z; Zhu T; Sarsenbekuly B; Gabdullin M
    Macromol Rapid Commun; 2021 Jun; 42(11):e2100033. PubMed ID: 33904224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keeping lung surfactant where it belongs: protein regulation of two-dimensional viscosity.
    Alonso C; Waring A; Zasadzinski JA
    Biophys J; 2005 Jul; 89(1):266-73. PubMed ID: 15833995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk shear viscosities of endogenous and exogenous lung surfactants.
    King DM; Wang Z; Palmer HJ; Holm BA; Notter RH
    Am J Physiol Lung Cell Mol Physiol; 2002 Feb; 282(2):L277-84. PubMed ID: 11792632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.
    Schenck DM; Fiegel J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface tension and rheology of aqueous dispersed systems containing a new hydrophobically modified polymer and surfactants.
    Claro C; Muñoz J; de la Fuente J; Jiménez-Castellanos MR; Lucero MJ
    Int J Pharm; 2008 Jan; 347(1-2):45-53. PubMed ID: 17693044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.