BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36305892)

  • 61. DNA Origami Nanoantennas for Fluorescence Enhancement.
    Glembockyte V; Grabenhorst L; Trofymchuk K; Tinnefeld P
    Acc Chem Res; 2021 Sep; 54(17):3338-3348. PubMed ID: 34435769
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Probing Multidimensional Structural Information of Single Molecules Transporting through a Sub-10 nm Conical Plasmonic Nanopore by SERS.
    Zhou J; Zhou PL; Shen Q; Ahmed SA; Pan XT; Liu HL; Ding XL; Li J; Wang K; Xia XH
    Anal Chem; 2021 Aug; 93(34):11679-11685. PubMed ID: 34415740
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering.
    Giovannozzi AM; Rolle F; Sega M; Abete MC; Marchis D; Rossi AM
    Food Chem; 2014 Sep; 159():250-6. PubMed ID: 24767052
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DNA walker-powered ratiometric SERS cytosensor of circulating tumor cells with single-cell sensitivity.
    Xiong J; Dong C; Zhang J; Fang X; Ni J; Gan H; Li J; Song C
    Biosens Bioelectron; 2022 Oct; 213():114442. PubMed ID: 35679649
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays.
    Zhang K; Zhao J; Ji J; Li Y; Liu B
    Anal Chem; 2015 Sep; 87(17):8702-8. PubMed ID: 26267841
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags.
    Shen Y; Yue J; Shi W; Xu W; Xu S
    Biosens Bioelectron; 2020 Mar; 151():111957. PubMed ID: 31868606
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA.
    Li M; Cushing SK; Liang H; Suri S; Ma D; Wu N
    Anal Chem; 2013 Feb; 85(4):2072-8. PubMed ID: 23320458
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 60-nt DNA Direct Detection without Pretreatment by Surface-Enhanced Raman Scattering with Polycationic Modified Ag Microcrystal Derived from AgCl Cube.
    Mao J; Huang L; Fan L; Chen F; Lou J; Shan X; Yu D; Zhou J
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833883
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.
    Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM
    Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.
    Patra PP; Chikkaraddy R; Tripathi RP; Dasgupta A; Kumar GV
    Nat Commun; 2014 Jul; 5():4357. PubMed ID: 25000476
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Direct detection of DNA using 3D surface enhanced Raman scattering hotspot matrix.
    Wang Y; Wei Z; Zhang Y; Chen Y
    Electrophoresis; 2019 Aug; 40(16-17):2104-2111. PubMed ID: 30861157
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment.
    Schuknecht F; Kołątaj K; Steinberger M; Liedl T; Lohmueller T
    Nat Commun; 2023 Nov; 14(1):7192. PubMed ID: 37938571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.