These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36306089)

  • 1. CRISPR-Cas9 Shaped Viral Metagenomes Associated with Bacillus subtilis.
    Kohm K; Lutz VT; Friedrich I; Hertel R
    Methods Mol Biol; 2023; 2555():205-212. PubMed ID: 36306089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR-Cas9-Based Toolkit for Fast and Precise In Vivo Genetic Engineering of
    Schilling T; Dietrich S; Hoppert M; Hertel R
    Viruses; 2018 May; 10(5):. PubMed ID: 29734705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chances and limitations when uncovering essential and non-essential genes of Bacillus subtilis phages with CRISPR-Cas9.
    Kohm K; Basu S; Nawaz MM; Hertel R
    Environ Microbiol Rep; 2021 Dec; 13(6):934-944. PubMed ID: 34465000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.
    Jakutyte-Giraitiene L; Gasiunas G
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1183-8. PubMed ID: 27255973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPR-Cas9 tool to explore the genetics of Bacillus subtilis phages.
    Otte K; Kühne NM; Furrer AD; Baena Lozada LP; Lutz VT; Schilling T; Hertel R
    Lett Appl Microbiol; 2020 Dec; 71(6):588-595. PubMed ID: 32615024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and preliminary characterization of bacteriophages for Bacillus subtilis.
    ROMIG WR; BRODETSKY AM
    J Bacteriol; 1961 Jul; 82(1):135-41. PubMed ID: 13743075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BacteRiophage EXclusion (BREX): A novel anti-phage mechanism in the arsenal of bacterial defense system.
    Chaudhary K
    J Cell Physiol; 2018 Feb; 233(2):771-773. PubMed ID: 28444888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fishing for phages in metagenomes: what do we catch, what do we miss?
    Benler S; Koonin EV
    Curr Opin Virol; 2021 Aug; 49():142-150. PubMed ID: 34139668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
    Borges AL; Zhang JY; Rollins MF; Osuna BA; Wiedenheft B; Bondy-Denomy J
    Cell; 2018 Aug; 174(4):917-925.e10. PubMed ID: 30033364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins.
    Hynes AP; Rousseau GM; Agudelo D; Goulet A; Amigues B; Loehr J; Romero DA; Fremaux C; Horvath P; Doyon Y; Cambillau C; Moineau S
    Nat Commun; 2018 Jul; 9(1):2919. PubMed ID: 30046034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a Host-Confined Phage Metagenome Allows the Detection of Phages Both Capable and Incapable of Plaque Formation.
    Friedrich I; Hertel R
    Methods Mol Biol; 2023; 2555():195-203. PubMed ID: 36306088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching for fat tails in CRISPR-Cas systems: Data analysis and mathematical modeling.
    Pavlova YS; Paez-Espino D; Morozov AY; Belalov IS
    PLoS Comput Biol; 2021 Mar; 17(3):e1008841. PubMed ID: 33770071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing methods of genetic manipulation in Bacillus subtilis for expression of recombinant enzyme: Replicative or integrative (CRISPR-Cas9) plasmid?
    Santos KO; Costa-Filho J; Spagnol KL; Marins LF
    J Microbiol Methods; 2019 Sep; 164():105667. PubMed ID: 31295508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.