These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36306177)
1. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent. Wang B; Liu M; Liu J; Tian Y; Liu W; Wu G; Cheng J; Zhang Y; Zhao G; Ni Z Langmuir; 2022 Nov; 38(44):13477-13487. PubMed ID: 36306177 [TBL] [Abstract][Full Text] [Related]
2. Regulating mechanical performance of poly (l-lactide acid) stent by the combined effects of heat and aqueous media. Liu J; Wang B; Liu W; Hu X; Zhang C; Zhou Z; Lang J; Wu G; Zhang Y; Yang J; Ni Z; Zhao G Int J Biol Macromol; 2023 Jul; 242(Pt 4):124987. PubMed ID: 37236565 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Im SH; Kim CY; Jung Y; Jang Y; Kim SH Biomater Sci; 2017 Feb; 5(3):422-431. PubMed ID: 28184401 [TBL] [Abstract][Full Text] [Related]
4. Strengthen oriented poly (L-lactic acid) monofilaments via mechanical training. Zhang Y; Dong X; Zhang C; Wu X; Cheng J; Wu G; Sun R; Ni Z; Zhao G Int J Biol Macromol; 2024 Apr; 263(Pt 2):129975. PubMed ID: 38418283 [TBL] [Abstract][Full Text] [Related]
5. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483 [TBL] [Abstract][Full Text] [Related]
6. Mixed-braided stent: An effective way to improve comprehensive mechanical properties of poly (L-lactic acid) self-expandable braided stent. Liu M; Tian Y; Cheng J; Zhang Y; Zhao G; Ni Z J Mech Behav Biomed Mater; 2022 Apr; 128():105123. PubMed ID: 35183885 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. Agrawal CM; Haas KF; Leopold DA; Clark HG Biomaterials; 1992; 13(3):176-82. PubMed ID: 1567942 [TBL] [Abstract][Full Text] [Related]
8. An experimental investigation of the mechanical performance of PLLA wire-braided stents. Lucchetti A; Emonts C; Idrissi A; Gries T; Vaughan TJ J Mech Behav Biomed Mater; 2023 Feb; 138():105568. PubMed ID: 36459705 [TBL] [Abstract][Full Text] [Related]
9. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Pauck RG; Reddy BD Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397 [TBL] [Abstract][Full Text] [Related]
10. A hazardous boundary of Poly(L-lactic acid) braided stent design: Limited elastic deformability of polymer materials. Li J; Cheng J; Hu X; Liu J; Tian Y; Wu G; Chen L; Zhang Y; Zhao G; Ni Z J Mech Behav Biomed Mater; 2023 Feb; 138():105628. PubMed ID: 36543082 [TBL] [Abstract][Full Text] [Related]
11. The effect of intrinsic characteristics on mechanical properties of poly(l-lactic acid) bioresorbable vascular stents. Hua R; Tian Y; Cheng J; Wu G; Jiang W; Ni Z; Zhao G Med Eng Phys; 2020 Jul; 81():118-124. PubMed ID: 32482508 [TBL] [Abstract][Full Text] [Related]
12. Multiplicity of morphologies in poly (l-lactide) bioresorbable vascular scaffolds. Ailianou A; Ramachandran K; Kossuth MB; Oberhauser JP; Kornfield JA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11670-11675. PubMed ID: 27671659 [TBL] [Abstract][Full Text] [Related]
13. Different properties of poly(L-lactic acid) monofilaments and its corresponding braided springs after constrained and unconstrained annealing. Zhao G; Ma S; Li X; Tian Y; Wu G; Zhang Y; Cheng J; Ni Z J Biomater Appl; 2022 Sep; 37(3):517-526. PubMed ID: 35639441 [TBL] [Abstract][Full Text] [Related]
14. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents. Wang Q; Fang G; Zhao Y; Wang G; Cai T J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678 [TBL] [Abstract][Full Text] [Related]
15. Development of three-dimensionally printed vascular stents of bioresorbable poly(l-lactide-co-caprolactone). Zhao J; Song G; Zhao Q; Feng H; Wang Y; Anderson JM; Zhao H; Liu Q J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):656-664. PubMed ID: 36420745 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis. Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078 [TBL] [Abstract][Full Text] [Related]
17. Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries. Dinh Nguyen T; Feng G; Yi X; Lyu Y; Lan Z; Xia J; Wu T; Jiang X J Biomater Appl; 2018 Aug; 33(2):227-233. PubMed ID: 30096995 [TBL] [Abstract][Full Text] [Related]
18. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites Sun DX; Gu T; Mao YT; Huang CH; Qi XD; Yang JH; Wang Y Biomacromolecules; 2022 Apr; 23(4):1789-1802. PubMed ID: 35344361 [TBL] [Abstract][Full Text] [Related]
20. In vitro study of drug-loaded bioresorbable films and support structures. Zilberman M; Eberhart RC; Schwade ND J Biomater Sci Polym Ed; 2002; 13(11):1221-40. PubMed ID: 12518801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]