These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 36306413)

  • 1. Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring.
    Lian M; Sun J; Jiang D; Xu M; Wu Z; Bin Xu B; Algadi H; Huang M; Guo Z
    Nanotechnology; 2022 Oct; 34(2):. PubMed ID: 36306413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Triboelectric-Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long-Lasting Energy Harvesting.
    Ding S; Zhai H; Tao X; Yang P; Liu Z; Qin S; Hong Z; Chen X; Wang ZL
    Small; 2024 Jun; ():e2403879. PubMed ID: 38881274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triboelectric-Electromagnetic Hybrid Generator for Harvesting Blue Energy.
    Shao H; Cheng P; Chen R; Xie L; Sun N; Shen Q; Chen X; Zhu Q; Zhang Y; Liu Y; Wen Z; Sun X
    Nanomicro Lett; 2018; 10(3):54. PubMed ID: 30393702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor.
    Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL
    ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-friendly, compact, and cost-efficient triboelectric nanogenerator for renewable energy harvesting and smart motion sensing.
    Delgado-Alvarado E; Martínez-Castillo J; Morales-González EA; González-Calderón JA; Armendáriz-Alonso EF; Rodríguez-Liñán GM; López-Esparza R; Hernández-Hernández J; Elvira-Hernández EA; Herrera-May AL
    Heliyon; 2024 Apr; 10(7):e28482. PubMed ID: 38601514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting.
    Cao M; Chen Y; Sha J; Xu Y; Chen S; Xu F
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durable Roller-Based Swing-Structured Triboelectric Nanogenerator for Water Wave Energy Harvesting.
    Xu Z; Chen L; Zhang Z; Han J; Chen P; Hong Z; Jiang T; Wang ZL
    Small; 2024 Apr; 20(15):e2307288. PubMed ID: 37997215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switchless Oscillating Charge Pump-Based Triboelectric Nanogenerator and an Additional Electromagnetic Generator for Harvesting Vertical Vibration Energy.
    Kim I; Kim D
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35849133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Electrical Output Performance of Cellulose-Based Triboelectric Nanogenerators Enabled by Negative Triboelectric Materials.
    Wang F; Wang S; Liu Y; Hou T; Wu Z; Qian J; Zhao Z; Wang L; Jia C; Ma S
    Small; 2024 May; 20(19):e2308195. PubMed ID: 38072819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Piezoelectric/Triboelectric Wearable Nanogenerator Based on Stretchable PVDF-PDMS Composite Films.
    Chen Q; Cao Y; Lu Y; Akram W; Ren S; Niu L; Sun Z; Fang J
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6239-6249. PubMed ID: 38272672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofiber-Enhanced "Lucky-Bag" Triboelectric Nanogenerator for Efficient Wave Energy Harvesting by Soft-Contact Structure.
    Luo Y; Li B; Mo L; Ye Z; Shen H; Lu Y; Li S
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance-Improved Highly Integrated Uniaxial Tristate Hybrid Nanogenerator for Sustainable Mechanical Energy Harvesting.
    Khan AA; Saritas R; Rana MM; Tanguy N; Zhu W; Mei N; Kokilathasan S; Rassel S; Leonenko Z; Yan N; Abdel-Rahman E; Ban D
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4119-4131. PubMed ID: 35025196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review.
    Vidal JV; Slabov V; Kholkin AL; Dos Santos MPS
    Nanomicro Lett; 2021 Sep; 13(1):199. PubMed ID: 34542731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator.
    Chen J; Tang N; Cheng L; Zheng Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Durable and High-Performance Triboelectric Nanogenerator Based on an Inorganic Triboelectric Pair of Diamond-Like-Carbon and Glass.
    Li W; Lu L; Zhang C; Loos K; Pei Y
    Adv Sci (Weinh); 2024 Jul; ():e2309170. PubMed ID: 38952062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water-Current Energy and Self-Powered Sensing.
    Deng Z; Xu L; Qin H; Li X; Duan J; Hou B; Wang ZL
    Adv Mater; 2022 Sep; 34(39):e2205064. PubMed ID: 35927935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ultrarobust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation.
    Fu S; He W; Tang Q; Wang Z; Liu W; Li Q; Shan C; Long L; Hu C; Liu H
    Adv Mater; 2022 Jan; 34(2):e2105882. PubMed ID: 34617342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations.
    Wu C; Park JH; Koo B; Chen X; Wang ZL; Kim TW
    ACS Nano; 2018 Oct; 12(10):9947-9957. PubMed ID: 30272956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.