These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36306576)

  • 1. A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data.
    Supakar R; Satvaya P; Chakrabarti P
    Comput Biol Med; 2022 Dec; 151(Pt A):106225. PubMed ID: 36306576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal.
    Bagherzadeh S; Shahabi MS; Shalbaf A
    Comput Biol Med; 2022 Jul; 146():105570. PubMed ID: 35504218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
    Phang CR; Noman F; Hussain H; Ting CM; Ombao H
    IEEE J Biomed Health Inform; 2020 May; 24(5):1333-1343. PubMed ID: 31536026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring deep residual network based features for automatic schizophrenia detection from EEG.
    Siuly S; Guo Y; Alcin OF; Li Y; Wen P; Wang H
    Phys Eng Sci Med; 2023 Jun; 46(2):561-574. PubMed ID: 36947384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia.
    Siuly S; Li Y; Wen P; Alcin OF
    Comput Intell Neurosci; 2022; 2022():1992596. PubMed ID: 36120676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic identification of schizophrenia employing EEG records analyzed with deep learning algorithms.
    Soria Bretones C; Roncero Parra C; Cascón J; Borja AL; Mateo Sotos J
    Schizophr Res; 2023 Nov; 261():36-46. PubMed ID: 37690170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-Based Assessment Model for Real-Time Identification of Visual Learners Using Raw EEG.
    Jawed S; Faye I; Malik AS
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():378-390. PubMed ID: 38194390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals.
    Aslan Z; Akin M
    Phys Eng Sci Med; 2022 Mar; 45(1):83-96. PubMed ID: 34822131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition.
    Reddy YRM; Muralidhar P; Srinivas M
    Brain Topogr; 2024 Jan; 37(1):1-18. PubMed ID: 37995000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals.
    Tsiouris ΚΜ; Pezoulas VC; Zervakis M; Konitsiotis S; Koutsouris DD; Fotiadis DI
    Comput Biol Med; 2018 Aug; 99():24-37. PubMed ID: 29807250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals.
    He L; Zhang L; Lin X; Qin Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1781-1793. PubMed ID: 38374416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging.
    Zhao D; Jiang R; Feng M; Yang J; Wang Y; Hou X; Wang X
    Technol Health Care; 2022; 30(2):323-336. PubMed ID: 34180436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of self-limited epilepsy with centrotemporal spikes by classical machine learning and deep learning based on electroencephalogram data.
    Liu X; Zhang X; Yu T; Dang R; Li J; Hu B; Wang Q; Luo R
    Brain Res; 2024 May; 1830():148813. PubMed ID: 38373675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-LSTM-ATT: a hybrid deep learning approach with optimized features for emotion recognition in electroencephalogram.
    Abgeena A; Garg S
    Health Inf Sci Syst; 2023 Dec; 11(1):40. PubMed ID: 37654692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning.
    Gupta A; Siddhad G; Pandey V; Roy PP; Kim BG
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical signals analysis to recognize intralimb mobility using modified RNN and various EEG quantities.
    Al-Quraishi MS; Tan WH; Elamvazuthi I; Ooi CP; Saad NM; Al-Hiyali MI; Karim HA; Azhar Ali SS
    Heliyon; 2024 May; 10(9):e30406. PubMed ID: 38726180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HH model based smart deep brain stimulator to detect, predict and control epilepsy using machine learning algorithm.
    Nambi Narayanan S; Subbian S
    J Neurosci Methods; 2023 Apr; 389():109825. PubMed ID: 36822276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble deep learning approach for predicting cocoa yield.
    Olofintuyi SS; Olajubu EA; Olanike D
    Heliyon; 2023 Apr; 9(4):e15245. PubMed ID: 37089327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.