These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36306633)
1. Examination of an acoustic field longitudinal power distribution in quasicollinear acousto-optic cells. Mantsevich SN; Kostyleva EI Ultrasonics; 2023 Feb; 128():106875. PubMed ID: 36306633 [TBL] [Abstract][Full Text] [Related]
2. Influence of acoustic anisotropy in paratellurite on quasicollinear acousto-optic interaction. Mantsevich SN; Balakshy VI; Molchanov VY; Yushkov KB Ultrasonics; 2015 Dec; 63():39-46. PubMed ID: 26118495 [TBL] [Abstract][Full Text] [Related]
4. Temperature impact on acoustic wave reflection in quasi-collinear acousto-optic devices. Mantsevich SN; Kostyleva EI J Acoust Soc Am; 2024 Sep; 156(3):1964-1972. PubMed ID: 39315888 [TBL] [Abstract][Full Text] [Related]
5. Acoustic field structure simulation in quasi-collinear acousto-optic cells with ultrasound beam reflection. Mantsevich SN; Molchanov VY; Yushkov KB; Khorkin VS; Kupreychik MI Ultrasonics; 2017 Jul; 78():175-184. PubMed ID: 28395212 [TBL] [Abstract][Full Text] [Related]
6. Examination of the temperature influence on phase matching frequency in tunable acousto-optic filters. Mantsevich SN; Kostyleva EI Ultrasonics; 2019 Jan; 91():45-51. PubMed ID: 30064011 [TBL] [Abstract][Full Text] [Related]
7. Shear acoustic wave attenuation influence on acousto-optic diffraction in tellurium dioxide crystal. Mantsevich S; Kostyleva E Appl Opt; 2020 Aug; 59(22):6796-6802. PubMed ID: 32749387 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the Tellurium Dioxide Crystal Shear Acoustic Wave Attenuation at 40-140 MHz Frequency. Mi Z; Zhao H; Guo Q; Yu Y; Liang Y Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203260 [TBL] [Abstract][Full Text] [Related]
9. Quasi-Collinear AOTF Spectral Transmission Under Temperature Gradients Aroused by Ultrasound Power Absotption. Mantsevich SN; Balakshy VI; Yushkov KB; Molchanov VY; Tretiakov SA IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Dec; 69(12):3411-3421. PubMed ID: 36318569 [TBL] [Abstract][Full Text] [Related]
10. Acousto-Optic Cells with Phased-Array Transducers and Their Application in Systems of Optical Information Processing. Balakshy V; Kupreychik M; Mantsevich S; Molchanov V Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477715 [TBL] [Abstract][Full Text] [Related]
11. Investigation of acoustic beam reflection influence on the collinear acousto-optic interaction characteristics. Mantsevich SN Ultrasonics; 2016 Aug; 70():92-7. PubMed ID: 27153373 [TBL] [Abstract][Full Text] [Related]
12. Acousto-optic control of internal acoustic reflection in tellurium dioxide crystal in case of strong elastic energy walkoff [Invited]. Voloshinov V; Polikarpova N; Ivanova P; Khorkin V Appl Opt; 2018 Apr; 57(10):C19-C25. PubMed ID: 29714268 [TBL] [Abstract][Full Text] [Related]
13. Acousto-optic investigation of propagation and reflection of acoustic waves in paratellurite crystal. Voloshinov VB; Polikarpova NV Appl Opt; 2009 Mar; 48(7):C55-66. PubMed ID: 19252617 [TBL] [Abstract][Full Text] [Related]
14. Anisotropy of acousto-optic figure of merit for the case of a Bragg-diffracted wave propagating along an optic axis in optically biaxial crystals: Tl Krupych O; Adamenko D; Kostyrko M; Vlokh R Appl Opt; 2020 May; 59(13):4022-4029. PubMed ID: 32400677 [TBL] [Abstract][Full Text] [Related]
15. Two regimes of wide angle acousto-optic interaction in tellurium dioxide single crystals. Voloshinov VB; Yukhnevich TV Appl Opt; 2013 Aug; 52(24):5912-9. PubMed ID: 24084991 [TBL] [Abstract][Full Text] [Related]
16. Influence of acoustic energy walk-off on acousto-optic diffraction characteristics. Balakshy VI; Voloshin AS; Molchanov VY Ultrasonics; 2015 May; 59():102-8. PubMed ID: 25708348 [TBL] [Abstract][Full Text] [Related]