These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36306833)
61. Analysis of the Possibility of Using Cenospheres in the Production of Cement Mortars for Use in an Elevated Temperature Environment. Rutkowska G; Ogrodnik P; Żółtowski M; Powęzka A; Kaszewska K Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236616 [TBL] [Abstract][Full Text] [Related]
62. Evaluation of sulfate resistance of cement mortars containing black rice husk ash. Chatveera B; Lertwattanaruk P J Environ Manage; 2009 Mar; 90(3):1435-41. PubMed ID: 19008031 [TBL] [Abstract][Full Text] [Related]
63. Performance of Sustainable Mortars Made with Filler from Different Construction By-Products. López-Uceda A; Fernández-Ledesma E; Jiménez JR; Fernández-Rodríguez JM Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407967 [TBL] [Abstract][Full Text] [Related]
64. Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars. Popławski J; Lelusz M Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772178 [TBL] [Abstract][Full Text] [Related]
65. A study of fine aggregate replacement with fly ash an environmental friendly and economical solution. Pofale AD; Deo SV J Environ Sci Eng; 2010 Oct; 52(4):373-8. PubMed ID: 22312809 [TBL] [Abstract][Full Text] [Related]
66. Aquaphotomic Study of Effects of Different Mixing Waters on the Properties of Cement Mortar. Muncan J; Tamura S; Nakamura Y; Takigawa M; Tsunokake H; Tsenkova R Molecules; 2022 Nov; 27(22):. PubMed ID: 36431986 [TBL] [Abstract][Full Text] [Related]
67. Lightweight Cement Conglomerates Based on End-of-Life Tire Rubber: Effect of the Grain Size, Dosage and Addition of Perlite on the Physical and Mechanical Properties. Petrella A; Notarnicola M Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33466425 [TBL] [Abstract][Full Text] [Related]
68. Comparing the use of sewage sludge ash and glass powder in cement mortars. Chen Z; Poon CS Environ Technol; 2017 Jun; 38(11):1390-1398. PubMed ID: 27575029 [TBL] [Abstract][Full Text] [Related]
69. Stabilization of Waste-to-Energy (WTE) fly ash for disposal in landfills or use as cement substitute. Tian Y; Themelis NJ; Zhao D; Thanos Bourtsalas AC; Kawashima S Waste Manag; 2022 Aug; 150():227-243. PubMed ID: 35863171 [TBL] [Abstract][Full Text] [Related]
70. High value-added utilization of desulfurized building gypsum as self-leveling mortar: the comprehensive effect of cement. Zhao M; Fan P; Zhang M; Huang J; Leng P; Peng J Environ Sci Pollut Res Int; 2024 May; 31(22):32599-32613. PubMed ID: 38656719 [TBL] [Abstract][Full Text] [Related]
71. Mechanical Properties and Sulfate Resistance of High Volume Fly Ash Cement Mortars with Air-Cooled Slag as Fine Aggregate and Polypropylene Fibers. Kim JH; Qudoos A; Jakhrani SH; ; Lee JB; Kim SS; Ryou JS Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717483 [TBL] [Abstract][Full Text] [Related]
72. Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Yan S; Sagoe-Crentsil K; Shapiro G J Environ Manage; 2011 Aug; 92(8):2085-90. PubMed ID: 21507557 [TBL] [Abstract][Full Text] [Related]
73. Investigation of Self-Healing Mortars with and without Bagasse Ash at Pre- and Post-Crack Times. Tesfamariam BB; Seyoum R; Andoshe DM; Terfasa TT; Ahmed GMS; Badruddin IA; Khaleed HMT Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268883 [TBL] [Abstract][Full Text] [Related]
75. The Thermal Parameters of Mortars Based on Different Cement Type and W/C Ratios. Stolarska A; Strzałkowski J Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987796 [TBL] [Abstract][Full Text] [Related]
76. Compressive Strength Evaluation of Ordinary Portland Cement Mortar Blended with Hydrogen Nano-Bubble Water and Graphene. Kim YH; Park Y; Bae S; Kim SY; Han JG J Nanosci Nanotechnol; 2020 Jan; 20(1):647-652. PubMed ID: 31383227 [TBL] [Abstract][Full Text] [Related]
77. Effect of High-Dispersible Graphene on the Strength and Durability of Cement Mortars. Qi X; Zhang S; Wang T; Guo S; Ren R Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671967 [TBL] [Abstract][Full Text] [Related]
78. Lifecycle Assessment and Multi-Parameter Optimization of Lightweight Cement Mortar with Nano Additives. Du Y; Korjakins A; Sinka M; Pundienė I Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274823 [TBL] [Abstract][Full Text] [Related]
79. Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures. Khan MA; Imam MK; Irshad K; Ali HM; Hasan MA; Islam S Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918466 [TBL] [Abstract][Full Text] [Related]
80. Parametric Analysis to Study the Influence of Aerogel-Based Renders' Components on Thermal and Mechanical Performance. Ximenes S; Silva A; Soares A; Flores-Colen I; de Brito J Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]