BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36306856)

  • 1. Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands.
    Hikouei IS; Eshleman KN; Saharjo BH; Graham LLB; Applegate G; Cochrane MA
    Sci Total Environ; 2023 Jan; 857(Pt 3):159701. PubMed ID: 36306856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland.
    Sinclair AL; Graham LLB; Putra EI; Saharjo BH; Applegate G; Grover SP; Cochrane MA
    Sci Total Environ; 2020 Jan; 699():134199. PubMed ID: 31522054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater table and soil-hydrological properties datasets of Indonesian peatlands.
    Taufik M; Tw M; Awaluddin ; Mukharomah AK; Minasny B
    Data Brief; 2022 Apr; 41():107903. PubMed ID: 35198682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drainage increases CO
    Prananto JA; Minasny B; Comeau LP; Rudiyanto R; Grace P
    Glob Chang Biol; 2020 Aug; 26(8):4583-4600. PubMed ID: 32391633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.
    Jaenicke J; Englhart S; Siegert F
    J Environ Manage; 2011 Mar; 92(3):630-8. PubMed ID: 20971549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
    Moore S; Evans CD; Page SE; Garnett MH; Jones TG; Freeman C; Hooijer A; Wiltshire AJ; Limin SH; Gauci V
    Nature; 2013 Jan; 493(7434):660-3. PubMed ID: 23364745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amount of carbon released from peat and forest fires in Indonesia during 1997.
    Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S
    Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.
    Cobb AR; Hoyt AM; Gandois L; Eri J; Dommain R; Abu Salim K; Kai FM; Haji Su'ut NS; Harvey CF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5187-E5196. PubMed ID: 28607068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building capacity for estimating fire emissions from tropical peatlands; a worked example from Indonesia.
    Krisnawati H; Volkova L; Budiharto B; Zamzani F; Adinugroho WC; Qirom MA; Weston CJ
    Sci Rep; 2023 Sep; 13(1):14355. PubMed ID: 37658110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable carbon losses from recurrent fires in drained tropical peatlands.
    Konecny K; Ballhorn U; Navratil P; Jubanski J; Page SE; Tansey K; Hooijer A; Vernimmen R; Siegert F
    Glob Chang Biol; 2016 Apr; 22(4):1469-80. PubMed ID: 26661597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys.
    Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D
    Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evapotranspiration of tropical peat swamp forests.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2015 May; 21(5):1914-27. PubMed ID: 24912043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropical peat subsidence rates are related to decadal LULC changes: Insights from InSAR analysis.
    Umarhadi DA; Widyatmanti W; Kumar P; Yunus AP; Khedher KM; Kharrazi A; Avtar R
    Sci Total Environ; 2022 Apr; 816():151561. PubMed ID: 34767891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle.
    Abrams JF; Hohn S; Rixen T; Baum A; Merico A
    Glob Chang Biol; 2016 Jan; 22(1):325-37. PubMed ID: 26416553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum.
    Hapsari KA; Jennerjahn T; Nugroho SH; Yulianto E; Behling H
    Glob Chang Biol; 2022 May; 28(10):3459-3479. PubMed ID: 35312144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.