These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 36306961)
21. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049 [TBL] [Abstract][Full Text] [Related]
22. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. Murthy ZV; Chaudhari LB J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379 [TBL] [Abstract][Full Text] [Related]
23. Forward osmosis membranes for high-efficiency desalination with Nano-MoS Li MN; Chen XJ; Wan ZH; Wang SG; Sun XF Chemosphere; 2021 Sep; 278():130341. PubMed ID: 33823353 [TBL] [Abstract][Full Text] [Related]
24. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide. Coronell O; Mi B; Mariñas BJ; Cahill DG Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291 [TBL] [Abstract][Full Text] [Related]
25. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes. Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153 [TBL] [Abstract][Full Text] [Related]
26. Improving the Performance of the Lamellar Reduced Graphene Oxide/Molybdenum Sulfide Nanofiltration Membrane through Accelerated Water-Transport Channels and Capacitively Enhanced Charge Density. Xing J; Zhang H; Wei G; Du L; Chen S; Yu H; Quan X Environ Sci Technol; 2023 Jan; 57(1):615-625. PubMed ID: 36525305 [TBL] [Abstract][Full Text] [Related]
27. Nanofiltration Membranes with Salt-Responsive Ion Valves for Enhanced Separation Performance in Brackish Water Treatment: A Battle against the Limitation of Salt Concentration. Li S; Bai L; Ding J; Liu Z; Li G; Liang H Environ Sci Technol; 2023 Sep; 57(38):14452-14463. PubMed ID: 37712407 [TBL] [Abstract][Full Text] [Related]
28. Ion and organic transport in Graphene oxide membranes: Model development to difficult water remediation applications. Aher A; Nickerson T; Jordan C; Thorpe F; Hatakeyama E; Ormsbee L; Majumder M; Bhattacharyya D J Memb Sci; 2020 Jun; 604():. PubMed ID: 35912317 [TBL] [Abstract][Full Text] [Related]
29. Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: model application. Koyuncu I; Topacik D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1055-68. PubMed ID: 15137719 [TBL] [Abstract][Full Text] [Related]
30. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893 [TBL] [Abstract][Full Text] [Related]
31. Combined Effects of Surface Charge and Pore Size on Co-Enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes. Zhang H; Quan X; Chen S; Fan X; Wei G; Yu H Environ Sci Technol; 2018 Apr; 52(8):4827-4834. PubMed ID: 29617119 [TBL] [Abstract][Full Text] [Related]
32. Exfoliated hydrotalcite-modified polyethersulfone-based nanofiltration membranes for removal of lead from aqueous solutions. Poolachira S; Velmurugan S Environ Sci Pollut Res Int; 2020 Aug; 27(24):29725-29736. PubMed ID: 31745790 [TBL] [Abstract][Full Text] [Related]
33. Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes. Amiri S; Asghari A; Harifi-Mood AR; Rajabi M; He T; Vatanpour V Chemosphere; 2022 Dec; 308(Pt 2):136323. PubMed ID: 36084832 [TBL] [Abstract][Full Text] [Related]
34. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential. Kim H; Jeong N; Yang S; Choi J; Lee MS; Nam JY; Jwa E; Kim B; Ryu KS; Choi YW Water Res; 2019 Nov; 165():114970. PubMed ID: 31426007 [TBL] [Abstract][Full Text] [Related]
35. Custom-Tailoring Loose Nanofiltration Membrane for Precise Biomolecule Fractionation: New Insight into Post-Treatment Mechanisms. Guo S; Chen X; Wan Y; Feng S; Luo J ACS Appl Mater Interfaces; 2020 Mar; 12(11):13327-13337. PubMed ID: 32109041 [TBL] [Abstract][Full Text] [Related]
36. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions. Wadekar SS; Vidic RD Environ Sci Technol; 2017 May; 51(10):5658-5665. PubMed ID: 28414440 [TBL] [Abstract][Full Text] [Related]
37. Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation. Léniz-Pizarro F; Liu C; Colburn A; Escobar IC; Bhattacharyya D J Memb Sci; 2021 Feb; 620():. PubMed ID: 35002049 [TBL] [Abstract][Full Text] [Related]
38. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724 [TBL] [Abstract][Full Text] [Related]
39. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Cheng S; Oatley DL; Williams PM; Wright CJ Water Res; 2012 Jan; 46(1):33-42. PubMed ID: 22078250 [TBL] [Abstract][Full Text] [Related]
40. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu(OH) Chen Y; Sun R; Yan W; Wu M; Zhou Y; Gao C Sci Total Environ; 2022 Apr; 817():152897. PubMed ID: 35031372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]