BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36307049)

  • 1. Archaeal lipolytic enzymes: Current developments and further prospects.
    Meghwanshi GK; Verma S; Srivastava V; Kumar R
    Biotechnol Adv; 2022 Dec; 61():108054. PubMed ID: 36307049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New extremophilic lipases and esterases from metagenomics.
    López-López O; Cerdán ME; González Siso MI
    Curr Protein Pept Sci; 2014; 15(5):445-55. PubMed ID: 24588890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27.
    Fuciños P; González R; Atanes E; Sestelo AB; Pérez-Guerra N; Pastrana L; Rúa ML
    Methods Mol Biol; 2012; 861():239-66. PubMed ID: 22426723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial lipolytic fusion enzymes: current state and future perspectives.
    Gudiukaite R; Gricajeva A
    World J Microbiol Biotechnol; 2017 Nov; 33(12):216. PubMed ID: 29181632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of individual domains' functionality in fused lipolytic biocatalysts based on Geobacillus lipases and esterases.
    Savickaite A; Druteika G; Sadauskas M; Malunavicius V; Lastauskiene E; Gudiukaite R
    Int J Biol Macromol; 2021 Jan; 168():261-271. PubMed ID: 33301847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal lipases as biocatalysts: A promising platform in several industrial biotechnology applications.
    Mahfoudhi A; Benmabrouk S; Fendri A; Sayari A
    Biotechnol Bioeng; 2022 Dec; 119(12):3370-3392. PubMed ID: 36137755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains.
    Ozcan B; Ozyilmaz G; Cokmus C; Caliskan M
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):105-10. PubMed ID: 18830729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-adapted esterases and lipases: from fundamentals to application.
    Tutino ML; di Prisco G; Marino G; de Pascale D
    Protein Pept Lett; 2009; 16(10):1172-80. PubMed ID: 19508185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremophilic lipases for industrial applications: A general review.
    Vivek K; Sandhia GS; Subramaniyan S
    Biotechnol Adv; 2022 Nov; 60():108002. PubMed ID: 35688350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do lipases and esterases work: the electrostatic contribution.
    Neves Petersen MT; Fojan P; Petersen SB
    J Biotechnol; 2001 Feb; 85(2):115-47. PubMed ID: 11165360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes.
    López-López O; Cerdán ME; González-Siso MI
    Microorganisms; 2015 Nov; 3(4):792-808. PubMed ID: 27682117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.
    Borrelli GM; Trono D
    Int J Mol Sci; 2015 Sep; 16(9):20774-840. PubMed ID: 26340621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics and mechanistic action guided engineering of lipolytic enzymes.
    Kumar R
    J Cell Biochem; 2023 Jun; 124(6):877-888. PubMed ID: 37087743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GDSL family of serine esterases/lipases.
    Akoh CC; Lee GC; Liaw YC; Huang TH; Shaw JF
    Prog Lipid Res; 2004 Nov; 43(6):534-52. PubMed ID: 15522763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From structure to catalysis: recent developments in the biotechnological applications of lipases.
    Anobom CD; Pinheiro AS; De-Andrade RA; Aguieiras EC; Andrade GC; Moura MV; Almeida RV; Freire DM
    Biomed Res Int; 2014; 2014():684506. PubMed ID: 24783219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the production, properties and applications of haloextremozymes protease and lipase from haloarchaea.
    Gaonkar SK; Alvares JJ; Furtado IJ
    World J Microbiol Biotechnol; 2023 Sep; 39(11):322. PubMed ID: 37755613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential.
    Snellman EA; Colwell RR
    J Ind Microbiol Biotechnol; 2004 Oct; 31(9):391-400. PubMed ID: 15378387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal domain replacement changes an archaeal monoacylglycerol lipase into a triacylglycerol lipase.
    Soni S; Sathe SS; Sheth RR; Tiwari P; Vadgama RN; Odaneth AA; Lali AM; Chandrayan SK
    Biotechnol Biofuels; 2019; 12():110. PubMed ID: 31080517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis.
    Chepyshko H; Lai CP; Huang LM; Liu JH; Shaw JF
    BMC Genomics; 2012 Jul; 13():309. PubMed ID: 22793791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review.
    Barriuso J; Vaquero ME; Prieto A; Martínez MJ
    Biotechnol Adv; 2016; 34(5):874-885. PubMed ID: 27188926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.