BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3630721)

  • 1. Lack of casual relationship between medullary blood congestion and tubular necrosis in postischaemic kidney damage.
    Andersson G; Jennische E
    Acta Physiol Scand; 1987 Jul; 130(3):429-32. PubMed ID: 3630721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation.
    McLarnon SR; Wilson K; Patel B; Sun J; Sartain CL; Mejias CD; Musall JB; Sullivan JC; Wei Q; Chen JK; Hyndman KA; Marshall B; Yang H; Fogo AB; O'Connor PM
    J Am Soc Nephrol; 2022 Apr; 33(4):769-785. PubMed ID: 35115326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inner medullary collecting duct function in ischemic acute renal failure.
    Wilson DR; Honrath U
    Clin Invest Med; 1988 Jun; 11(3):157-66. PubMed ID: 3402104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensated heart failure predisposes to outer medullary tubular injury: studies in rats.
    Goldfarb M; Abassi Z; Rosen S; Shina A; Brezis M; Heyman SN
    Kidney Int; 2001 Aug; 60(2):607-13. PubMed ID: 11473643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outer medullary circulatory defect in ischemic acute renal failure.
    Yamamoto K; Wilson DR; Baumal R
    Am J Pathol; 1984 Aug; 116(2):253-61. PubMed ID: 6465286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of the renal medulla in ischemic acute renal failure in the rat.
    Torhorst J; de Rougemont D; Brunner FP; Thiel G
    Nephron; 1982; 31(4):296-300. PubMed ID: 7177265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure.
    Mason J; Torhorst J; Welsch J
    Kidney Int; 1984 Sep; 26(3):283-93. PubMed ID: 6513274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous EGF as a potential renotrophic factor in ischemia-induced acute renal failure.
    Schaudies RP; Nonclercq D; Nelson L; Toubeau G; Zanen J; Heuson-Stiennon JA; Laurent G
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F425-34. PubMed ID: 8214102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance.
    Goldfarb M; Rosenberger C; Abassi Z; Shina A; Zilbersat F; Eckardt KU; Rosen S; Heyman SN
    Am J Nephrol; 2006; 26(1):22-33. PubMed ID: 16508244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperglycaemia emerging during general anaesthesia induces rat acute kidney injury via impaired microcirculation, augmented apoptosis and inhibited cell proliferation.
    Efrati S; Berman S; Hamad RA; Siman-Tov Y; Chanimov M; Weissgarten J
    Nephrology (Carlton); 2012 Feb; 17(2):111-22. PubMed ID: 22066573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired medullary circulation in postischemic acute renal failure.
    Karlberg L; Norlén BJ; Ojteg G; Wolgast M
    Acta Physiol Scand; 1983 May; 118(1):11-7. PubMed ID: 6624494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction.
    Heyman SN; Rosen S; Fuchs S; Epstein FH; Brezis M
    J Am Soc Nephrol; 1996 Jul; 7(7):1066-74. PubMed ID: 8829123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of ischaemic acute renal failure with superoxide dismutase and sucrose.
    Bayati A; Hellberg O; Odlind B; Wolgast M
    Acta Physiol Scand; 1987 Jul; 130(3):367-72. PubMed ID: 3630718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury.
    Zahedi K; Wang Z; Barone S; Prada AE; Kelly CN; Casero RA; Yokota N; Porter CW; Rabb H; Soleimani M
    Am J Physiol Renal Physiol; 2003 May; 284(5):F1046-55. PubMed ID: 12554636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue distribution of neutrophils in postischemic acute renal failure.
    Willinger CC; Schramek H; Pfaller K; Pfaller W
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1992; 62(4):237-43. PubMed ID: 1359696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stem cells from foreign body granulation tissue accelerate recovery from acute kidney injury.
    Patel J; Pancholi N; Gudehithlu KP; Sethupathi P; Hart PD; Dunea G; Arruda JA; Singh AK
    Nephrol Dial Transplant; 2012 May; 27(5):1780-6. PubMed ID: 22036939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of loop diuretics on the long-term outcome of post-ischaemic acute renal failure in the rat.
    Bayati A; Nygren K; Källskog O; Wolgast M
    Acta Physiol Scand; 1990 Jun; 139(2):271-9. PubMed ID: 2368616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible involvement of myofibroblasts in cellular recovery of uranyl acetate-induced acute renal failure in rats.
    Sun DF; Fujigaki Y; Fujimoto T; Yonemura K; Hishida A
    Am J Pathol; 2000 Oct; 157(4):1321-35. PubMed ID: 11021836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombin inhibition with melagatran does not attenuate renal ischaemia-reperfusion injury in rats.
    Nitescu N; Grimberg E; Ricksten SE; Marcussen N; Guron G
    Nephrol Dial Transplant; 2007 Aug; 22(8):2149-55. PubMed ID: 17405786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A pathomorphological study on damage and repair process of tubuli after renal ischemia].
    Takeda T
    Nihon Jinzo Gakkai Shi; 1996 Nov; 38(11):493-501. PubMed ID: 8958703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.