These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36307417)
1. On the fluorescence enhancement of arch neuronal optogenetic reporters. Barneschi L; Marsili E; Pedraza-González L; Padula D; De Vico L; Kaliakin D; Blanco-González A; Ferré N; Huix-Rotllant M; Filatov M; Olivucci M Nat Commun; 2022 Oct; 13(1):6432. PubMed ID: 36307417 [TBL] [Abstract][Full Text] [Related]
2. Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore. Manathunga M; Yang X; Orozco-Gonzalez Y; Olivucci M J Phys Chem Lett; 2017 Oct; 8(20):5222-5227. PubMed ID: 28981285 [TBL] [Abstract][Full Text] [Related]
3. Red-shifting mutation of light-driven sodium-pump rhodopsin. Inoue K; Del Carmen Marín M; Tomida S; Nakamura R; Nakajima Y; Olivucci M; Kandori H Nat Commun; 2019 Apr; 10(1):1993. PubMed ID: 31040285 [TBL] [Abstract][Full Text] [Related]
4. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562 [TBL] [Abstract][Full Text] [Related]
5. Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin. Strambi A; Coto PB; Frutos LM; Ferré N; Olivucci M J Am Chem Soc; 2008 Mar; 130(11):3382-8. PubMed ID: 18302369 [TBL] [Abstract][Full Text] [Related]
6. Electrostatic control of photoisomerization pathways in proteins. Romei MG; Lin CY; Mathews II; Boxer SG Science; 2020 Jan; 367(6473):76-79. PubMed ID: 31896714 [TBL] [Abstract][Full Text] [Related]
7. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. González-Luque R; Garavelli M; Bernardi F; Merchán M; Robb MA; Olivucci M Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9379-84. PubMed ID: 10944211 [TBL] [Abstract][Full Text] [Related]
8. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model. Valentini A; Rivero D; Zapata F; García-Iriepa C; Marazzi M; Palmeiro R; Fdez Galván I; Sampedro D; Olivucci M; Frutos LM Angew Chem Int Ed Engl; 2017 Mar; 56(14):3842-3846. PubMed ID: 28251753 [TBL] [Abstract][Full Text] [Related]
9. The effect of protein environment on photoexcitation properties of retinal. Kaila VR; Send R; Sundholm D J Phys Chem B; 2012 Feb; 116(7):2249-58. PubMed ID: 22166007 [TBL] [Abstract][Full Text] [Related]
10. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Andruniów T; Ferré N; Olivucci M Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17908-13. PubMed ID: 15604139 [TBL] [Abstract][Full Text] [Related]
11. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Herwig L; Rice AJ; Bedbrook CN; Zhang RK; Lignell A; Cahn JKB; Renata H; Dodani SC; Cho I; Cai L; Gradinaru V; Arnold FH Cell Chem Biol; 2017 Mar; 24(3):415-425. PubMed ID: 28262559 [TBL] [Abstract][Full Text] [Related]
12. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
13. Quantum chemical modeling of rhodopsin mutants displaying switchable colors. Melaccio F; Ferré N; Olivucci M Phys Chem Chem Phys; 2012 Sep; 14(36):12485-95. PubMed ID: 22699180 [TBL] [Abstract][Full Text] [Related]
14. Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic interaction behind the color variations. Hasegawa JY; Ise T; Fujimoto KJ; Kikuchi A; Fukumura E; Miyawaki A; Shiro Y J Phys Chem B; 2010 Mar; 114(8):2971-9. PubMed ID: 20131896 [TBL] [Abstract][Full Text] [Related]
15. Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR spectroscopy. Concistrè M; Gansmüller A; McLean N; Johannessen OG; Marín Montesinos I; Bovee-Geurts PH; Brown RC; DeGrip WJ; Levitt MH J Am Chem Soc; 2009 May; 131(17):6133-40. PubMed ID: 19354207 [TBL] [Abstract][Full Text] [Related]
16. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Glock C; Nagpal J; Gottschalk A Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970 [TBL] [Abstract][Full Text] [Related]
17. Automated QM/MM Screening of Rhodopsin Variants with Enhanced Fluorescence. Pedraza-González L; Barneschi L; Marszałek M; Padula D; De Vico L; Olivucci M J Chem Theory Comput; 2023 Jan; 19(1):293-310. PubMed ID: 36516450 [TBL] [Abstract][Full Text] [Related]
18. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking. Park JW; Rhee YM Phys Chem Chem Phys; 2016 Feb; 18(5):3944-55. PubMed ID: 26771034 [TBL] [Abstract][Full Text] [Related]
19. Toward an understanding of the retinal chromophore in rhodopsin mimics. Huntress MM; Gozem S; Malley KR; Jailaubekov AE; Vasileiou C; Vengris M; Geiger JH; Borhan B; Schapiro I; Larsen DS; Olivucci M J Phys Chem B; 2013 Sep; 117(35):10053-70. PubMed ID: 23971945 [TBL] [Abstract][Full Text] [Related]
20. Floquet Study of Quantum Control of the Cis-Trans Photoisomerization of Rhodopsin. Videla PE; Markmann A; Batista VS J Chem Theory Comput; 2018 Mar; 14(3):1198-1205. PubMed ID: 29425032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]