These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36307509)

  • 21. Logistic matrix factorisation and generative adversarial neural network-based method for predicting drug-target interactions.
    Abbou SI; Bouziane H; Chouarfia A
    Mol Divers; 2021 Aug; 25(3):1497-1516. PubMed ID: 34297278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction.
    Wang X; Liu D; Zhu J; Rodriguez-Paton A; Song T
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33925310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bidirectional interpretable compound-protein interaction prediction framework based on cross attention.
    Wang M; Wang J; Rong Z; Wang L; Xu Z; Zhang L; He J; Li S; Cao L; Hou Y; Li K
    Comput Biol Med; 2024 Apr; 172():108239. PubMed ID: 38460309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convolutional Neural Network and Bidirectional Long Short-Term Memory-Based Method for Predicting Drug-Disease Associations.
    Xuan P; Ye Y; Zhang T; Zhao L; Sun C
    Cells; 2019 Jul; 8(7):. PubMed ID: 31336774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The applications of deep learning algorithms on in silico druggable proteins identification.
    Yu L; Xue L; Liu F; Li Y; Jing R; Luo J
    J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of drug protein interactions based on variable scale characteristic pyramid convolution network.
    Chen Y; Zhu Y; Zhang Z; Wang J; Wang C
    Methods; 2023 Mar; 211():42-47. PubMed ID: 36804213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MIFNN: Molecular Information Feature Extraction and Fusion Deep Neural Network for Screening Potential Drugs.
    Wang J; Li H; Zhao W; Pang T; Sun Z; Zhang B; Xu H
    Curr Issues Mol Biol; 2022 Nov; 44(11):5638-5654. PubMed ID: 36421666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug-protein interaction prediction
    Zhang Y; Hu Y; Li H; Liu X
    Front Genet; 2022; 13():1032779. PubMed ID: 36313473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DAFA-BiLSTM: Deep Autoregression Feature Augmented Bidirectional LSTM network for time series prediction.
    Wang H; Zhang Y; Liang J; Liu L
    Neural Netw; 2023 Jan; 157():240-256. PubMed ID: 36399979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism.
    Zhao Q; Zhao H; Zheng K; Wang J
    Bioinformatics; 2022 Jan; 38(3):655-662. PubMed ID: 34664614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2'-O-Dimethyladenosine Sites in RNA Sequences.
    Luo Z; Su W; Lou L; Qiu W; Xiao X; Xu Z
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Explainable deep drug-target representations for binding affinity prediction.
    Monteiro NRC; Simões CJV; Ávila HV; Abbasi M; Oliveira JL; Arrais JP
    BMC Bioinformatics; 2022 Jun; 23(1):237. PubMed ID: 35715734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning-Based Modeling of Drug-Target Interaction Prediction Incorporating Binding Site Information of Proteins.
    D'Souza S; Prema KV; Balaji S; Shah R
    Interdiscip Sci; 2023 Jun; 15(2):306-315. PubMed ID: 36967455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks.
    Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.