These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36307750)
1. Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Swain SS; Hussain T Chem Biodivers; 2022 Nov; 19(11):e202200267. PubMed ID: 36307750 [TBL] [Abstract][Full Text] [Related]
2. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Swain SS; Pati S; Hussain T Eur J Med Chem; 2022 Mar; 232():114173. PubMed ID: 35168150 [TBL] [Abstract][Full Text] [Related]
3. An Kumar S; Sahu P; Jena L Int J Mycobacteriol; 2019; 8(3):252-261. PubMed ID: 31512601 [TBL] [Abstract][Full Text] [Related]
4. Drug-lead Anti-tuberculosis Phytochemicals: A Systematic Review. Swain SS; Hussain T; Pati S Curr Top Med Chem; 2021; 21(20):1832-1868. PubMed ID: 34225624 [TBL] [Abstract][Full Text] [Related]
5. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
6. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
7. Antidiabetic potency and molecular insights of natural products bearing indole moiety: A systematic bioinformatics investigation targeting AKT1. Tanty DK; Sahu PR; Mohapatra R; Sahu SK Comput Biol Chem; 2024 Jun; 110():108059. PubMed ID: 38608439 [TBL] [Abstract][Full Text] [Related]
8. Antituberculosis, antioxidant and cytotoxicity profiles of quercetin: a systematic and cost-effective Swain SS; Rout SS; Sahoo A; Oyedemi SO; Hussain T Nat Prod Res; 2022 Sep; 36(18):4763-4767. PubMed ID: 34854322 [TBL] [Abstract][Full Text] [Related]
9. Isoniazid-phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. Swain SS; Paidesetty SK; Padhy RN; Hussain T Chem Biol Drug Des; 2020 Aug; 96(2):714-730. PubMed ID: 32237023 [TBL] [Abstract][Full Text] [Related]
10. Antimycobacterial Compound of Cynoglossum lanceolatum Forsk.: Bioassay Guided Isolation, Molecular Docking, Synthesis of Analogs, and a Plausible Mechanism of Action. Zhao X; Wang L; Xia MY; Yang ZC Chem Biodivers; 2023 Feb; 20(2):e202200965. PubMed ID: 36567254 [TBL] [Abstract][Full Text] [Related]
11. Screening of Anti-mycobacterial Phytochemical Compounds for Potential Inhibitors against Mycobacterium Tuberculosis Isocitrate Lyase. Tiwari A; Kumar A; Srivastava G; Sharma A Curr Top Med Chem; 2019; 19(8):600-608. PubMed ID: 30836915 [TBL] [Abstract][Full Text] [Related]
12. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis. Agarwal S; Verma E; Kumar V; Lall N; Sau S; Iyer AK; Kashaw SK J Mol Graph Model; 2018 Aug; 83():17-32. PubMed ID: 29753941 [TBL] [Abstract][Full Text] [Related]
13. Qureshi KA; Azam F; Fatmi MQ; Imtiaz M; Prajapati DK; Rai PK; Jaremko M; Emwas AH; Elhassan GO PeerJ; 2023; 11():e14502. PubMed ID: 36935926 [TBL] [Abstract][Full Text] [Related]
14. Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products. Baptista R; Bhowmick S; Shen J; Mur LAJ Molecules; 2021 Jan; 26(2):. PubMed ID: 33477495 [TBL] [Abstract][Full Text] [Related]
15. Identification of new benzamide inhibitor against α-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations. Naz S; Farooq U; Ali S; Sarwar R; Khan S; Abagyan R J Biomol Struct Dyn; 2019 Mar; 37(4):1043-1053. PubMed ID: 29502488 [TBL] [Abstract][Full Text] [Related]
16. Computational investigation of phytomolecules as resuscitation-promoting factor B (RpfB) inhibitors for clinical suppression of Mycobacterium tuberculosis dormancy reactivation. Dwivedi VD; Arya A; Sharma T; Sharma S; Patil SA; Gupta VK Infect Genet Evol; 2020 Sep; 83():104356. PubMed ID: 32438079 [TBL] [Abstract][Full Text] [Related]
17. One-pot synthesis, spectral characterization, biological evaluation, molecular docking studies and in silico ADME/Tox profiling of new 2,4,5 triaryl imidazole derivatives as anti tubercular agents. Munnaluri RK; Chevula J; Patnam N; Yamini L; Manga V Indian J Tuberc; 2023 Oct; 70(4):451-459. PubMed ID: 37968051 [TBL] [Abstract][Full Text] [Related]
18. Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery. Ekins S; Madrid PB; Sarker M; Li SG; Mittal N; Kumar P; Wang X; Stratton TP; Zimmerman M; Talcott C; Bourbon P; Travers M; Yadav M; Freundlich JS PLoS One; 2015; 10(10):e0141076. PubMed ID: 26517557 [TBL] [Abstract][Full Text] [Related]
19. Structure-based discovery of novel inhibitors of Mycobacterium tuberculosis CYP121 from Indonesian natural products. Prasasty VD; Cindana S; Ivan FX; Zahroh H; Sinaga E Comput Biol Chem; 2020 Apr; 85():107205. PubMed ID: 31981965 [TBL] [Abstract][Full Text] [Related]
20. Structure-Activity Relationship of Novel Pyrimidine Derivatives with Potent Inhibitory Activities against Li C; Tian X; Huang Z; Gou X; Yusuf B; Li C; Gao Y; Liu S; Wang Y; Yang T; Liu Z; Sun Q; Zhang T; Luo Y J Med Chem; 2023 Feb; 66(4):2699-2716. PubMed ID: 36735271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]