BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36307914)

  • 1. Rapid lipid-laden plaque identification in intravascular optical coherence tomography imaging based on time-series deep learning.
    Rico-Jimenez JJ; Jo JA
    J Biomed Opt; 2022 Oct; 27(10):. PubMed ID: 36307914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques.
    Rico-Jimenez JJ; Campos-Delgado DU; Buja LM; Vela D; Jo JA
    Atherosclerosis; 2019 Nov; 290():94-102. PubMed ID: 31604172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography.
    Boi A; Jamthikar AD; Saba L; Gupta D; Sharma A; Loi B; Laird JR; Khanna NN; Suri JS
    Curr Atheroscler Rep; 2018 May; 20(7):33. PubMed ID: 29781047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography.
    Nam HS; Song JW; Jang SJ; Lee JJ; Oh WY; Kim JW; Yoo H
    J Biomed Opt; 2016 Jul; 21(7):75004. PubMed ID: 27391375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated lipid-rich plaque detection with short wavelength infra-red OCT system.
    Shimokado A; Kubo T; Nishiguchi T; Katayama Y; Taruya A; Ohta S; Kashiwagi M; Shimamura K; Kuroi A; Kameyama T; Shiono Y; Yamano T; Matsuo Y; Kitabata H; Ino Y; Hozumi T; Tanaka A; Akasaka T
    Eur Heart J Cardiovasc Imaging; 2018 Oct; 19(10):1174-1178. PubMed ID: 29186546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography.
    Habbel C; Hetterich H; Willner M; Herzen J; Steigerwald K; Auweter S; Schüller U; Hausleiter J; Massberg S; Reiser M; Pfeiffer F; Saam T; Bamberg F
    Invest Radiol; 2017 Apr; 52(4):223-231. PubMed ID: 28079701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
    Ughi GJ; Wang H; Gerbaud E; Gardecki JA; Fard AM; Hamidi E; Vacas-Jacques P; Rosenberg M; Jaffer FA; Tearney GJ
    JACC Cardiovasc Imaging; 2016 Nov; 9(11):1304-1314. PubMed ID: 26971006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated diagnosis of optical coherence tomography imaging on plaque vulnerability and its relation to clinical outcomes in coronary artery disease.
    Niioka H; Kume T; Kubo T; Soeda T; Watanabe M; Yamada R; Sakata Y; Miyamoto Y; Wang B; Nagahara H; Miyake J; Akasaka T; Saito Y; Uemura S
    Sci Rep; 2022 Aug; 12(1):14067. PubMed ID: 35982217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology.
    Shimokado A; Kubo T; Matsuo Y; Ino Y; Shiono Y; Shimamura K; Katayama Y; Taruya A; Nishiguchi T; Kashiwagi M; Kitabata H; Tanaka A; Hozumi T; Akasaka T
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1785-1790. PubMed ID: 31175528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo relationship between near-infrared spectroscopy-detected lipid-rich plaques and morphological plaque characteristics by optical coherence tomography and intravascular ultrasound: a multimodality intravascular imaging study.
    Zanchin C; Ueki Y; Losdat S; Fahrni G; Daemen J; Ondracek AS; Häner JD; Stortecky S; Otsuka T; Siontis GCM; Rigamonti F; Radu M; Spirk D; Kaiser C; Engstrom T; Lang I; Koskinas KC; Räber L
    Eur Heart J Cardiovasc Imaging; 2021 Jun; 22(7):824-834. PubMed ID: 31990323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated classification of coronary atherosclerotic plaque in optical frequency domain imaging based on deep learning.
    Shibutani H; Fujii K; Ueda D; Kawakami R; Imanaka T; Kawai K; Matsumura K; Hashimoto K; Yamamoto A; Hao H; Hirota S; Miki Y; Shiojima I
    Atherosclerosis; 2021 Jul; 328():100-105. PubMed ID: 34126504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Coherence Tomography in Vulnerable Plaque and Acute Coronary Syndrome.
    Kubo T
    Interv Cardiol Clin; 2023 Apr; 12(2):203-214. PubMed ID: 36922061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
    Verjans JW; Osborn EA; Ughi GJ; Calfon Press MA; Hamidi E; Antoniadis AP; Papafaklis MI; Conrad MF; Libby P; Stone PH; Cambria RP; Tearney GJ; Jaffer FA
    JACC Cardiovasc Imaging; 2016 Sep; 9(9):1087-1095. PubMed ID: 27544892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo detection of lipid-rich plaque by using a 40-MHz intravascular ultrasound: a comparison with optical coherence tomography findings.
    Takahashi K; Kakuta T; Yonetsu T; Lee T; Koura K; Hishikari K; Murai T; Iesaka Y; Isobe M
    Cardiovasc Interv Ther; 2013 Oct; 28(4):333-43. PubMed ID: 23649535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adoption of a new automated optical coherence tomography software to obtain a lipid plaque spread-out plot.
    Isidori F; Lella E; Marco V; Albertucci M; Ozaki Y; La Manna A; Biccirè FG; Romagnoli E; Bourantas CV; Paoletti G; Fabbiocchi F; Gatto L; Budassi S; Sticchi A; Burzotta F; Taglieri N; Calligaris G; Arbustini E; Alfonso F; Prati F
    Int J Cardiovasc Imaging; 2021 Nov; 37(11):3129-3135. PubMed ID: 34292435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma.
    Brown AJ; Obaid DR; Costopoulos C; Parker RA; Calvert PA; Teng Z; Hoole SP; West NE; Goddard M; Bennett MR
    Circ Cardiovasc Imaging; 2015 Oct; 8(10):e003487. PubMed ID: 26429760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography attenuation imaging for lipid core detection: an ex-vivo validation study.
    Gnanadesigan M; Hussain AS; White S; Scoltock S; Baumbach A; van der Steen AF; Regar E; Johnson TW; van Soest G
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):5-11. PubMed ID: 27620900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravascular Optical Coherence Tomography for Characterization of Atherosclerosis with a 1.7 Micron Swept-Source Laser.
    Li Y; Jing J; Heidari E; Zhu J; Qu Y; Chen Z
    Sci Rep; 2017 Nov; 7(1):14525. PubMed ID: 29109462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.