These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36307914)

  • 21. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography.
    Shimamura K; Kubo T; Akasaka T
    Expert Rev Cardiovasc Ther; 2021 May; 19(5):379-386. PubMed ID: 33823735
    [No Abstract]   [Full Text] [Related]  

  • 22. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic classification of atherosclerotic plaques imaged with intravascular OCT.
    Rico-Jimenez JJ; Campos-Delgado DU; Villiger M; Otsuka K; Bouma BE; Jo JA
    Biomed Opt Express; 2016 Oct; 7(10):4069-4085. PubMed ID: 27867716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets.
    Prabhu D; Bezerra H; Kolluru C; Gharaibeh Y; Mehanna E; Wu H; Wilson D
    J Biomed Opt; 2019 Oct; 24(10):1-15. PubMed ID: 31586357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images.
    Lee J; Kim JN; Dallan LAP; Zimin VN; Hoori A; Hassani NS; Makhlouf MHE; Guagliumi G; Bezerra HG; Wilson DL
    Sci Rep; 2024 Feb; 14(1):4393. PubMed ID: 38388637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study.
    Hartman EMJ; De Nisco G; Kok AM; Tomaniak M; Nous FMA; Korteland SA; Gijsen FJH; den Dekker WK; Diletti R; van Mieghem NMDA; Wilschut JM; Zijlstra F; van der Steen AFW; Budde RPJ; Daemen J; Wentzel JJ
    Cardiovasc Res; 2023 May; 119(4):1021-1029. PubMed ID: 36575921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical coherence tomography-guided percutaneous coronary intervention: a review of current clinical applications.
    Kurogi K; Ishii M; Yamamoto N; Yamanaga K; Tsujita K
    Cardiovasc Interv Ther; 2021 Apr; 36(2):169-177. PubMed ID: 33454867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
    Zaman RT; Yousefi S; Chibana H; Ikeno F; Long SR; Gambhir SS; Chin FT; McConnell MV; Xing L; Yeung A
    J Nucl Med; 2019 Sep; 60(9):1308-1316. PubMed ID: 30737298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.
    Lee S; Lee MW; Cho HS; Song JW; Nam HS; Oh DJ; Park K; Oh WY; Yoo H; Kim JW
    Circ Cardiovasc Interv; 2014 Aug; 7(4):560-9. PubMed ID: 25074255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of optical coherence tomography and intravascular ultrasound for evaluation of coronary lipid-rich atherosclerotic plaque progression and regression.
    Xie Z; Tian J; Ma L; Du H; Dong N; Hou J; He J; Dai J; Liu X; Pan H; Liu Y; Yu B
    Eur Heart J Cardiovasc Imaging; 2015 Dec; 16(12):1374-80. PubMed ID: 25911116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques.
    Shimokado A; Matsuo Y; Kubo T; Nishiguchi T; Taruya A; Teraguchi I; Shiono Y; Orii M; Tanimoto T; Yamano T; Ino Y; Hozumi T; Tanaka A; Muragaki Y; Akasaka T
    Atherosclerosis; 2018 Aug; 275():35-42. PubMed ID: 29859471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-modality intra-coronary plaque characterization: a pilot study.
    Gonzalo N; Serruys PW; Barlis P; Ligthart J; Garcia-Garcia HM; Regar E
    Int J Cardiol; 2010 Jan; 138(1):32-9. PubMed ID: 18774189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracoronary imaging using attenuation-compensated optical coherence tomography allows better visualisation of coronary artery diseases.
    Foin N; Mari JM; Nijjer S; Sen S; Petraco R; Ghione M; Di Mario C; Davies JE; Girard MJ
    Cardiovasc Revasc Med; 2013; 14(3):139-43. PubMed ID: 23632229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency, Predictors, Distribution, and Morphological Characteristics of Layered Culprit and Nonculprit Plaques of Patients With Acute Myocardial Infarction: In Vivo 3-Vessel Optical Coherence Tomography Study.
    Dai J; Fang C; Zhang S; Li L; Wang Y; Xing L; Yu H; Jiang S; Yin Y; Wang J; Wang Y; Guo J; Lei F; Liu H; Xu M; Ren X; Ma L; Wei G; Zhang S; Hou J; Mintz GS; Yu B
    Circ Cardiovasc Interv; 2020 Oct; 13(10):e009125. PubMed ID: 32957793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical coherence tomography-verified morphological correlates of high-intensity coronary plaques on non-contrast T1-weighted magnetic resonance imaging in patients with stable coronary artery disease.
    Kanaya T; Noguchi T; Otsuka F; Asaumi Y; Kataoka Y; Morita Y; Miura H; Nakao K; Fujino M; Kawasaki T; Nishimura K; Inoue T; Narula J; Yasuda S
    Eur Heart J Cardiovasc Imaging; 2019 Jan; 20(1):75-83. PubMed ID: 29514171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical Relevance of
    Lee JM; Bang JI; Koo BK; Hwang D; Park J; Zhang J; Yaliang T; Suh M; Paeng JC; Shiono Y; Kubo T; Akasaka T
    Circ Cardiovasc Imaging; 2017 Nov; 10(11):. PubMed ID: 29133478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atherosclerotic Coronary Plaque Development Visualized by In Vivo Coronary Imaging.
    Sakamoto K; Nagamatsu S; Yamamoto E; Kaikita K; Tsujita K
    Circ J; 2018 Jun; 82(7):1727-1734. PubMed ID: 29899175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of cholesterol crystals by optical coherence tomography.
    Jinnouchi H; Sato Y; Torii S; Sakamoto A; Cornelissen A; Bhoite RR; Kuntz S; Guo L; Paek KH; Fernandez R; Kolodgie FD; Virmani R; Finn AV
    EuroIntervention; 2020 Aug; 16(5):395-403. PubMed ID: 32310132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OCT for the identification of vulnerable plaque in acute coronary syndrome.
    Sinclair H; Bourantas C; Bagnall A; Mintz GS; Kunadian V
    JACC Cardiovasc Imaging; 2015 Feb; 8(2):198-209. PubMed ID: 25677892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.