BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36307966)

  • 1. Efficient gene replacement by CRISPR/Cas-mediated homologous recombination in the model diatom Thalassiosira pseudonana.
    Belshaw N; Grouneva I; Aram L; Gal A; Hopes A; Mock T
    New Phytol; 2023 Apr; 238(1):438-452. PubMed ID: 36307966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editing of the urease gene by CRISPR-Cas in the diatom
    Hopes A; Nekrasov V; Kamoun S; Mock T
    Plant Methods; 2016; 12():49. PubMed ID: 27904648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Mediated Genome Editing via Homologous Recombination in a Centric Diatom
    Yin W; Hu H
    ACS Synth Biol; 2023 Apr; 12(4):1287-1296. PubMed ID: 37031406
    [No Abstract]   [Full Text] [Related]  

  • 4. A role for the cell-wall protein silacidin in cell size of the diatom Thalassiosira pseudonana.
    Kirkham AR; Richthammer P; Schmidt K; Wustmann M; Maeda Y; Hedrich R; Brunner E; Tanaka T; van Pée KH; Falciatore A; Mock T
    ISME J; 2017 Nov; 11(11):2452-2464. PubMed ID: 28731468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing in Diatoms Using CRISPR-Cas to Induce Precise Bi-allelic Deletions.
    Hopes A; Nekrasov V; Belshaw N; Grouneva I; Kamoun S; Mock T
    Bio Protoc; 2017 Dec; 7(23):e2625. PubMed ID: 34595293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome editing in diatoms: achievements and goals.
    Kroth PG; Bones AM; Daboussi F; Ferrante MI; Jaubert M; Kolot M; Nymark M; Río Bártulos C; Ritter A; Russo MT; Serif M; Winge P; Falciatore A
    Plant Cell Rep; 2018 Oct; 37(10):1401-1408. PubMed ID: 30167805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation.
    Poulsen N; Kröger N
    J Phycol; 2023 Oct; 59(5):809-817. PubMed ID: 37424141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana.
    Nawaly H; Tanaka A; Toyoshima Y; Tsuji Y; Matsuda Y
    Photosynth Res; 2023 May; 156(2):217-229. PubMed ID: 36862281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance.
    van Tol HM; Armbrust EV
    PLoS One; 2021; 16(3):e0241960. PubMed ID: 33760840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana.
    Smith SR; Glé C; Abbriano RM; Traller JC; Davis A; Trentacoste E; Vernet M; Allen AE; Hildebrand M
    New Phytol; 2016 May; 210(3):890-904. PubMed ID: 26844818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation and architecture of housekeeping genes in the model marine diatom Thalassiosira pseudonana.
    Li Z; Zhang Y; Li W; Irwin AJ; Finkel ZV
    New Phytol; 2022 May; 234(4):1363-1376. PubMed ID: 35179783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals.
    Singh S; Chaudhary R; Deshmukh R; Tiwari S
    Plant Mol Biol; 2023 Jan; 111(1-2):1-20. PubMed ID: 36315306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome Profiling in the Model Diatom Thalassiosira pseudonana.
    Pichler M; Meindl A; Romberger M; Eckes-Shephard A; Nyberg-Brodda CF; Buhigas C; Llaneza-Lago S; Lehmann G; Hopes A; Meister G; Medenbach J; Mock T
    Curr Protoc; 2023 Jul; 3(7):e843. PubMed ID: 37439534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella.
    Alverson AJ; Beszteri B; Julius ML; Theriot EC
    BMC Evol Biol; 2011 May; 11():125. PubMed ID: 21569560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses.
    Cheng H; Shao Z; Lu C; Duan D
    BMC Plant Biol; 2021 Feb; 21(1):87. PubMed ID: 33568068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification of a gene encoding MTHB-methyltransferase.
    Kageyama H; Tanaka Y; Shibata A; Waditee-Sirisattha R; Takabe T
    Arch Biochem Biophys; 2018 May; 645():100-106. PubMed ID: 29574051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms.
    Shao Z; Thomas Y; Hembach L; Xing X; Duan D; Moerschbacher BM; Bulone V; Tirichine L; Bowler C
    New Phytol; 2019 Mar; 221(4):1890-1905. PubMed ID: 30288745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum.
    Allorent G; Guglielmino E; Giustini C; Courtois F
    Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.