These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36308047)

  • 1. Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering.
    Díaz-Payno PJ; Kalogeropoulou M; Muntz I; Kingma E; Kops N; D'Este M; Koenderink GH; Fratila-Apachitei LE; van Osch GJVM; Zadpoor AA
    Adv Healthc Mater; 2023 Jan; 12(2):e2201891. PubMed ID: 36308047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs.
    Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R
    Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application.
    Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface.
    Senturk E; Bilici C; Afghah F; Khan Z; Celik S; Wu C; Koc B
    Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37201519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues.
    Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G
    Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D-bioprinted silk hydrogels for tissue engineering.
    Kim SH; Seo YB; Yeon YK; Lee YJ; Park HS; Sultan MT; Lee JM; Lee JS; Lee OJ; Hong H; Lee H; Ajiteru O; Suh YJ; Song SH; Lee KH; Park CH
    Biomaterials; 2020 Nov; 260():120281. PubMed ID: 32858503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible Light-Based 4D-Bioprinted Tissue Scaffold.
    Gugulothu SB; Chatterjee K
    ACS Macro Lett; 2023 Apr; 12(4):494-502. PubMed ID: 37002946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
    Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting.
    Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications.
    Kalogeropoulou M; Díaz-Payno PJ; Mirzaali MJ; van Osch GJVM; Fratila-Apachitei LE; Zadpoor AA
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38224616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.