BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 36308581)

  • 1. DNA barcoding, an effective tool for species identification: a review.
    Antil S; Abraham JS; Sripoorna S; Maurya S; Dagar J; Makhija S; Bhagat P; Gupta R; Sood U; Lal R; Toteja R
    Mol Biol Rep; 2023 Jan; 50(1):761-775. PubMed ID: 36308581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.
    Tanabe AS; Toju H
    PLoS One; 2013; 8(10):e76910. PubMed ID: 24204702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale.
    Krehenwinkel H; Pomerantz A; Henderson JB; Kennedy SR; Lim JY; Swamy V; Shoobridge JD; Graham N; Patel NH; Gillespie RG; Prost S
    Gigascience; 2019 May; 8(5):. PubMed ID: 30824940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forensic botany II, DNA barcode for land plants: Which markers after the international agreement?
    Ferri G; Corradini B; Ferrari F; Santunione AL; Palazzoli F; Alu' M
    Forensic Sci Int Genet; 2015 Mar; 15():131-6. PubMed ID: 25457632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Sequencing Technologies and DNA Barcoding.
    David A; Deepa Arul Priya J; Gautam A
    Methods Mol Biol; 2024; 2744():139-154. PubMed ID: 38683316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of species in the angiosperm family Apiaceae using DNA barcodes.
    Liu J; Shi L; Han J; Li G; Lu H; Hou J; Zhou X; Meng F; Downie SR
    Mol Ecol Resour; 2014 Nov; 14(6):1231-8. PubMed ID: 24739357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable, Cost-Effective, and Decentralized DNA Barcoding with Oxford Nanopore Sequencing.
    Srivathsan A; Meier R
    Methods Mol Biol; 2024; 2744():223-238. PubMed ID: 38683322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world.
    Liu S; Yang C; Zhou C; Zhou X
    Gigascience; 2017 Dec; 6(12):1-8. PubMed ID: 29077841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of nine extraction methods for bacterial identification using the ONT MinION sequencer.
    Graham KA; Gomez J; Primm TP; Houston R
    Int J Legal Med; 2024 Mar; 138(2):351-360. PubMed ID: 37775594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid and Cost-Effective Identification of Invertebrate Pests at the Borders Using MinION Sequencing of DNA Barcodes.
    Abeynayake SW; Fiorito S; Dinsdale A; Whattam M; Crowe B; Sparks K; Campbell PR; Gambley C
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market.
    Mishra P; Kumar A; Nagireddy A; Mani DN; Shukla AK; Tiwari R; Sundaresan V
    Plant Biotechnol J; 2016 Jan; 14(1):8-21. PubMed ID: 26079154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant DNA Barcoding Principles and Limits: A Case Study in the Genus Vanilla.
    Besse P; Da Silva D; Grisoni M
    Methods Mol Biol; 2021; 2222():131-148. PubMed ID: 33301092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant DNA barcode library for native flowering plants in the arid region of northwestern China.
    Song F; Li T; Yan HF; Feng Y; Jin L; Burgess KS; Ge XJ
    Mol Ecol Resour; 2023 Aug; 23(6):1389-1402. PubMed ID: 37021680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Takeaways from Mobile DNA Barcoding with BentoLab and MinION.
    Chang JJM; Ip YCA; Ng CSL; Huang D
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Identification of plant species based on DNA barcode technology].
    Pei NC
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1240-6. PubMed ID: 22919833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant DNA barcoding: from gene to genome.
    Li X; Yang Y; Henry RJ; Rossetto M; Wang Y; Chen S
    Biol Rev Camb Philos Soc; 2015 Feb; 90(1):157-66. PubMed ID: 24666563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Enrichment Barcoding (MEBarcoding): a new method for high throughput plant DNA barcoding.
    Gostel MR; Zúñiga JD; Kress WJ; Funk VA; Puente-Lelievre C
    Sci Rep; 2020 May; 10(1):8701. PubMed ID: 32457375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential of candidate DNA barcodes for identifying non-flowering seed plants.
    Pang X; Luo H; Sun C
    Plant Biol (Stuttg); 2012 Sep; 14(5):839-44. PubMed ID: 22309105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A MinION™-based pipeline for fast and cost-effective DNA barcoding.
    Srivathsan A; Baloğlu B; Wang W; Tan WX; Bertrand D; Ng AHQ; Boey EJH; Koh JJY; Nagarajan N; Meier R
    Mol Ecol Resour; 2018 Apr; ():. PubMed ID: 29673082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants.
    Wilkinson MJ; Szabo C; Ford CS; Yarom Y; Croxford AE; Camp A; Gooding P
    Sci Rep; 2017 Apr; 7():46040. PubMed ID: 28401958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.